MySQL淘宝用户行为分析

通过对10000名用户12244074条行为数据的分析,发现用户活跃高峰在10点到23点,尤其19点到23点。用户行为转化漏斗中购买率仅为1.04%,低于行业平均水平。RFM模型显示,购买次数最多用户ID为122338823,购买了809次。复购率91.69%,商品编号303205878被购买50次,建议建立用户信息库和粉丝群。理智型消费者购买率高但点击量少,等待型用户下单欲望较低。
摘要由CSDN通过智能技术生成

一、数据来源及说明

数据来源于: https://tianchi.aliyun.com/dataset/dataDetail?dataId=46&userId=1

二、分析维度

根据现有数据及分析目的,从四个维度进行分析:

第一个维度:用户购物情况整体分析

以PV、UV、平均访问量、跳失率等指标,分析用户最活跃的日期及活跃时段,了解用户行为习惯

第二个维度:商品购买情况分析

从成交量、人均购买次数、复购率等指标,探索用户对商品的购买偏好,了解商品的销售规律

第三个维度:用户行为转化漏斗分析

从收藏转化率、购物车转化率、成交转化率,对用户行为从浏览到购买进行漏斗分析

第四个维度:参照RFM模型

对用户进行分类,找出有价值的用户

三、分析正文

分析步骤如下:

提出问题------理解数据------数据清洗------构建模型------数据可视化

(一)提出问题

用户最活跃的日期及时段
用户对商品有哪些购买偏好
用户行为间的转化情况
用户分类,哪些是有价值的用户

(二)理解数据

本文从数据集中选取包含了2014年11月18日至2014年12月18日之间,10000名随机用户共12244074条行为数据,数据集的每一行表示一条用户行为,共6列。

列字段包含以下:

user_id:用户身份

item_id:商品ID

behavior_type:用户行为类型(包含点击、收藏、加购物车、购买四种行为,分别用数字1、2、3、4表示)

user_geohash:地理位置(有空值)

item_category:品类ID(商品所属的品类)

time:用户行为发生的时间

(三)数据清洗

1、导数

通过Navicat导入csv文件,数据库的表名为user。
在这里插入图片描述
2、缺失值处理

user_geohash 列表示地理位置信息,由于数据存在大量空值,且位置信息被加密处理,难以研究,因此后续不对user_geohash 列进行分析。

3、数据一致化处理

由于 time 字段的时间包含(年-月-日)和小时,为了方便分析,将该字段分成 2 个字段,一个日期列(date)和一个小时列(time)。

//select * from user;
alter table user change time date varchar(255);
alter table user add time varchar(20);
update user set time = date;
update user set date=replace(date,date,SUBSTRING_INDEX(date,' ',1));
update user set time=replace(time,time,substring_index(time,' ',-1));

在这里插入图片描述
由于 behavior_type 列的四种行为类型分别用 1,2,3,4 表示点击、收藏、加购物车、购买四种行为,为了方便查看数据,将1,2,3,4替换为 ‘pv’、’fav‘,’cart’,‘buy’ 。

alter table user modify behavior_type varchar(20);
#将behavior_type列数据替换
update user set behavior_type=replace(behavior_type,1,'pv');
update user set behavior_type=replace(behavior_type,2,'fav');
update user set behavior_type=replace(behavior_type,3,'cart');
update user set behavior_type=replace(behavior_type,4,'buy');
select * from user;

在这里插入图片描述
通过查询表结构,可以看到 date 列不是日期类型:

desc user;

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值