极限森林

目录

 

极限森林与决策树区别

加载数据

使用决策树

使用极限森林

数据质量 


极限森林与决策树区别

决策树,进行裂分时候,根据信息增益最大进行裂分,刻板, 情深不寿,慧极必伤。

极限森林: 1、样本随机 2、分裂条件随机(不是最好的裂分条件)
像在随机森林中一样,使用候选特征的随机子集,但不是寻找最有区别的阈值,而是为每个候选特征随机绘制阈值,并选择这些随机生成的阈值中的最佳阈值作为划分规则。

加载数据

X,y = datasets.load_wine(True)

使用决策树

clf = DecisionTreeClassifier()

cross_val_score(clf,X,y,cv = 6,scoring='accuracy').mean()

使用随机森林

forest = RandomForestClassifier(n_estimators=100)

cross_val_score(forest,X,y,cv = 6,scoring='accuracy').mean()

使用极限森林

extra = ExtraTreesClassifier(n_estimators=100)

cross_val_score(extra,X,y,cv = 6,scoring='accuracy').mean()

数据质量 

数据简单,那么普通的算法和复杂厉害的算法效果一样,清洗后数据,优化后的数据,整理的数据,对算法要求变低。所以说数据的质量,异常重要。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值