自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(60)
  • 收藏
  • 关注

原创 tensorflow基础知识

目录基础概念Tensorflow的基础概念Tensorflow的结构创建一个图并启动创建变量Fetch和Feed简单的使用案例非线性回归案例MNIST数据集分类简单版本基础概念Tensorflow的基础概念Tensorflow的结构创建一个图并启动import tensorflow as tf#创建一个变量opm1=tf.constant([[3,3]])#创建一个变量opm2=tf.constant([[2],[3]])#创建一个矩阵乘法op,把m1和m2传入product=

2020-09-09 16:05:27 166

原创 Linux系统学习笔记(Linux系统管理)

目录查看系统信息查看系统名称以及版本信息查看cpu信息查看内存信息显示磁盘所占内存以及当前目录下所占内存root用户下修复磁盘查看挂载磁盘信息查看系统内存使用情况查看各个进程的内存使用情况软件安装方式RPM方式(root用户下)tar方式查看系统信息查看系统名称以及版本信息查看cpu信息查看内存信息显示磁盘所占内存以及当前目录下所占内存root用户下修复磁盘查看挂载磁盘信息查看系统内存使用情况查看各个进程的内存使用情况软件安装方式RPM方式(root用户下)tar方

2020-06-10 16:25:49 491

原创 Linux系统学习笔记

目录基础知识介绍登陆界面介绍Linux系统基本命令基础知识介绍登陆界面介绍Linux系统基本命令

2020-06-09 18:05:36 213

原创 深度学习之深度学习框架——Tensorflow(构造神经网络)

目录(一)人工神经网络什么是人工神经网络神经网络的种类神经网络的特点神经网络的构成(二)构建神经网络相关APIone-hot编码API全连接计算损失(交叉熵)(一)人工神经网络什么是人工神经网络神经网络的种类神经网络的特点神经网络的构成(二)构建神经网络相关APIone-hot编码API全连接计算损失(交叉熵)...

2020-05-30 17:29:17 1400

原创 深度学习之深度学习框架——Tensorflow(线程队列与IO操作)

目录(一)队列和线程Tensorflow的队列tf.FIFOQueueTensorflow的队列管理器Tensorflow的线程管理器代码实现实现同步读取实现异步读取(二)文件的读取文件读取流程文件读取API文件队列构造文件阅读器文件内容解码器开启线程操作批量处理操作CSV文件读取案例(一)队列和线程Tensorflow的队列tf.FIFOQueueTensorflow的队列管理器Tensorflow的线程管理器代码实现实现同步读取import tensorflow as tf#

2020-05-29 11:49:08 258

原创 深度学习之深度学习框架——Tensorflow基础(二)

目录Tensorflow基础变量变量的创建变量的初始化代码演示可视化学习Tensorboard可视化步骤1.在程序中生成events文件2.在命令窗口中启动tensorboard3.复制网址,用谷歌浏览器打开4.过程中出现的问题Tensorboard出现:OSError:[Errno 22] Invalid argument网页打不开图中的符号意义增加变量显示线性回归的示例相关运算API梯度下降APItensorflow变量的作用域模型的保存与加载Tensorflow基础变量变量的创建变量的初始

2020-05-28 12:57:05 360

原创 深度学习之深度学习框架——Tensorflow

目录Tensorflow框架Tensorflow的特点Tensorflow基础Tensorflow的编程习惯Tensorflow的设计基本思想Tensorflow进阶图创一个新的图——tf.Graph()op有哪些会话会话的run()方法张量张量的阶张量的数据类型张量的属性张量的静态形状和动态形状张量操作——生成张量张量操作——张量变换Tensorflow框架Tensorflow的特点Tensorflow基础Tensorflow的编程习惯import tensorflow as tf# 实现

2020-05-26 17:05:21 824

原创 深度学习(深度学习框架简介)

目录Caffe设计结构Caffe的训练第一步 数据的准备第二步 编写网络文件第三步 定义solver文件第四步 训练主要特点优缺点Tensorflow代码示例优缺点TorchLua语言网络模型的主体结构主要特点优缺点MxNet总结Caffe设计结构Caffe的训练第一步 数据的准备第二步 编写网络文件第三步 定义solver文件第四步 训练主要特点优缺点Tensorflow代码示例优缺点TorchLua语言网络模型的主体结构主要特点优

2020-05-23 19:53:03 887

原创 深度学习(更多的网络模型)

目录Compositional Pattern Producing Network孪生网络Triplet NetworkVariation Auto-encoderPolicy networkMarkov decision processesBellman 公式Policy NetworkCompositional Pattern Producing Network孪生网络Triplet NetworkVariation Auto-encoderPolicy networkMark

2020-05-22 11:35:54 387

原创 深度学习(迁移学习实战)

目录预处理网络模型的构建网络的训练网络模型的验证预处理from __future__ import absolute_importfrom __future__ import divisionfrom __future__ import print_functionimport tensorflow as tffrom tensorflow.python.ops import control_flow_opsdef apply_with_random_selector(x, func,

2020-05-21 17:44:54 370

原创 深度学习(迁移学习详解)

目录什么是迁移学习为什么要进行迁移学习迁移学习的应用场景迁移学习的种类源数据和目标数据都有标签模型Fine-­‐tune训练方式保守训练/Conservative Training层转移/Layer TransferMultitask Learning源数据有标签,目标数据无标签域对抗/Domain-­‐adversarial training零样本学习/Zero-­‐shot Learning其他情况什么是迁移学习迁移学习是指将一个场景下学习到的知识迁移到另一种场景去应用。为什么要进行迁移学习1.

2020-05-21 08:35:37 4078 2

原创 深度学习(生成对抗网络GAN)

目录生成对抗网络GAN本质及组成部分数学原理简单的模型优点缺点深度GAN——DCGAN结构细节模型研究特征分析向量运算总结条件GAN——cGAN文字作为条件文字+位置约束InfoGAN特点生成对抗网络GAN本质及组成部分数学原理z表示隐随机变量,x表示真实数据简单的模型优点缺点深度GAN——DCGAN是指卷积神经网络+GAN结构细节模型研究特征分析改变部分噪声参数值向量运算噪声输入运算,生成不同的图片方向插值,生成中间朝向数据总结条件GAN——c

2020-05-20 11:08:08 654

原创 深度学习(卷积网络+递归网络)

目录CNN+RNN两种网络的相同点两种网络的不同点组合意义结合方式结合方式的实现图片标注基本思路模型设计整体结构特征提取特征融合数据准备模型训练视频行为识别常用方法RNN用于CNN特征融合RNN用于CNN特征筛选+融合RNN用于目标检测视频/图片问答问题定义问答的意义方法流程CNN+RNN两种网络的相同点两种网络的不同点组合意义大量信息同时具有时间空间特性:视频,图 文结合,真实的场景对话。带有图像的对话,文本表达更具体。视频相对图片描述的内容更完整。结合方式CNN 特征提取,用

2020-05-19 11:44:11 1436

原创 深度学习(递归神经网络)

目录递归神经网络工作过程递归神经网络的正向传播表达式递归神经网络的损失函数递归神经网络的反向计算递归神经网络工作过程每一个时刻的输出都与上一时刻的输出有关。递归神经网络的正向传播表达式递归神经网络的损失函数递归神经网络的反向计算...

2020-05-18 12:34:59 689

原创 深度学习(目标检测)

目录什么是目标检测传统方法——DPM基本思想目标检测的过程优点缺点神经网络分类——R-CNN方法神经网络分类的思想R-CNN的测试过程R-CNN的总结Fast R-CNN的共享卷积运算什么是目标检测目标检测的任务是找出图像中所有感兴趣的目标,确定它们的位置和类别。传统方法——DPM基本思想目标检测的过程优点缺点神经网络分类——R-CNN方法神经网络分类的思想R-CNN的测试过程R-CNN的总结Fast R-CNN的共享卷积运算...

2020-05-16 10:32:04 984

原创 深度学习(卷积神经网络——目标分类)

目录目标分类基本框架数据准备数据来源数据扩充数据规范模型设计任务分类现有模型局部更改——从头设计训练细节目标分类基本框架数据准备数据来源数据扩充数据规范模型设计模型的设计首先要明确模型的最终实现的目标,根据目标可以分为分类模型、分类+回归模型以及多目标分类模型。任务分类现有模型其次,模型的设计可以参考现有的模型进行设计。局部更改——从头设计训练细节...

2020-05-15 16:41:01 1072

原创 深度学习(卷积神经网络高级篇)

目录经典的卷积网络模型结构AlexNet网络模型结构VGG网络模型结构GoogLeNet网络模型结构全卷积结构ResNet网络模型结构经典的卷积网络模型结构AlexNet网络模型结构VGG网络模型结构GoogLeNet网络模型结构全卷积结构ResNet网络模型结构...

2020-05-15 10:55:39 462

原创 深度学习(卷积神经网络基础篇)

目录卷积神经网络——卷积层卷积核卷积层的参数卷积层的正向传播卷积层的反向传播卷积神经网络——功能层非线性激励池化层归一化层切分层融合层卷积神经网络——卷积层卷积核卷积层的参数卷积层的正向传播卷积层的反向传播卷积神经网络——功能层非线性激励池化层归一化层切分层融合层...

2020-05-14 19:46:52 489

原创 深度学习(传统神经网络)

目录神经网络的起源:线性回归什么是线性回归线性回归的优化方法:梯度下降梯度下降的步骤梯度下降的总结常见的非线性激励函数Sigmoid函数tahn函数ReLU函数神经网络的构建tensorflow构建简单的神经网络神经网络的“配件”损失函数——Loss学习率 Learning rate动量过拟合过拟合现象的解决办法正则化Dropout神经网络的起源:线性回归什么是线性回归线性回归是指用线性关系来描述输入到输出的映射关系。线性回归的优化方法:梯度下降梯度下降的步骤梯度下降的总结常见的非线性

2020-05-14 11:26:43 1383

原创 深度学习(绪论)

目录深度学习:从传统到现在深度学习的特点深度学习框架深度学习的基本概念神经元卷积核分类问题回归问题生成问题深度学习:从传统到现在深度学习的特点深度学习框架深度学习的基本概念神经元每个神经元都是由输入、权重、偏置以及激励函数组成的。卷积核卷积核是一种矩阵的形式,一般的卷积核大小为3*3,卷积核计算的过程类似于边界算子的计算过程, 将卷积核与图片中的像素点对应相乘,再相加,将得到的像素值作为该像素点的值。分类问题分类问题是指预测的目标值为离散值回归问题回归是指预测的目标值为

2020-05-13 15:47:48 526

原创 机器学习之隐马尔科夫模型

隐马尔科夫模型# !/usr/bin/python# -*- coding:utf-8 -*-import mathimport matplotlib.pyplot as pltimport numpy as npimport codecsimport randominfinite = float(-2**31)def log_normalize(a): s = 0 for x in a: s += x if s == 0:

2020-05-12 09:48:43 127

原创 机器学习之sklearn工具包(回归算法补全人脸)

import numpy as npimport matplotlib.pyplot as pltfrom sklearn.linear_model import LinearRegression,Ridge,Lassofrom sklearn.neighbors import KNeighborsRegressorfrom sklearn.tree import DecisionTree...

2020-05-06 16:53:13 290

原创 机器学习之sklearn工具包(不同回归算法的比较)

import numpy as npimport matplotlib.pyplot as pltfrom sklearn.neighbors import KNeighborsRegressorfrom sklearn.linear_model import LinearRegressionfrom sklearn.tree import DecisionTreeRegressorX...

2020-05-05 14:41:30 461

原创 机器学习之sklearn工具包(逻辑回归)

逻辑回归的一般过程实现逻辑回归的二分类与多分类import numpy as npfrom sklearn import datasetsfrom sklearn.linear_model import LogisticRegressionfrom sklearn.model_selection import train_test_splitX,y=datasets.load_iri...

2020-05-04 20:51:32 579

原创 机器学习之sklearn工具包(手写线性回归(二))

import numpy as npimport matplotlib.pyplot as pltfrom sklearn.linear_model import LinearRegression# # 一元二次# # f(x)=w1*x**2+w2*x+b# X=np.linspace(0,10,50).reshape(-1,1)# X=np.concatenate([X**2,X...

2020-05-04 12:35:51 178

原创 机器学习之sklearn工具包(手写代码实现简单的线性回归)

手写代码实现一元一次线性回归import numpy as npimport matplotlib.pyplot as pltfrom sklearn.linear_model import LinearRegression# 使用梯度下降解决一元一次的线性问题class LinearModel(object): def __init__(self): self...

2020-05-02 20:27:32 348

原创 机器学习之sklearn工具包(简单的线性回归)

目录利用波士顿房价解释线性回归二级目录三级目录利用波士顿房价解释线性回归import matplotlib.pyplot as pltfrom sklearn.linear_model import LinearRegressionimport numpy as npfrom sklearn import datasetsfrom sklearn.model_selection imp...

2020-05-01 19:15:53 596

原创 机器学习之sklearn工具包(AdaBoost算法)

目录AdaBoost算法算法的原理图用代码实现AdaBoost算法AdaBoost算法算法的原理图用代码实现AdaBoost算法import numpy as npfrom sklearn.ensemble import AdaBoostClassifierfrom sklearn import treeimport matplotlib.pyplot as pltX=np.ar...

2020-05-01 17:02:02 832

原创 机器学习之sklearn工具包(梯度提升分类树二分类原理)

目录梯度提升分类树二分类原理梯度提升分类树二分类原理import numpy as npfrom sklearn.ensemble import GradientBoostingClassifierfrom sklearn import treeimport matplotlib.pyplot as pltxi=np.arange(1,11)yi=np.array([0,0,0,1...

2020-05-01 11:48:29 523

原创 机器学习之sklearn工具包(极限森林)

目录极限森林梯度下降梯度上升极限森林import numpy as np# 梯度=导数import matplotlib.pyplot as plt# 回归是分类的极限思想# 分类的类别多到一定程度,那么就是回归from sklearn.ensemble import GradientBoostingClassifier,GradientBoostingRegressorfrom...

2020-04-28 19:58:42 634

原创 机器学习之sklearn工具包(决策树与随机森林)

目录决策树信息熵的概念信息熵的计算公式信息增益信息熵的计算随机森林决策树决策树是基于信息论提出的概念,划分原则是将原本无序的数据变得更加有序。信息熵的概念信息熵是指信息的不确定性,是对信息不确定性的度量。信息熵的计算公式信息增益信息增益表示的是原来的数据在没有按照任何属性划分时的熵与按照某一属性A进行划分后的信息熵的差值。信息熵的计算import numpy as np#...

2020-04-27 19:22:23 646

原创 机器学习之sklearn工具包(KNN分类(二))

目录KNN算法用鸢尾花数据做分类通过交叉验证的方式筛选参数用KNN进行癌症的预测KNN算法用鸢尾花数据做分类import numpy as npimport matplotlib.pylab as pybfrom sklearn.neighbors import KNeighborsClassifierfrom sklearn.datasets import load_irisX,y...

2020-04-25 20:09:13 658

原创 机器算法之sklearn工具(KNN算法)

这里写目录标题KNN算法代码示例KNN算法代码示例

2020-04-25 11:03:17 306

原创 机器学习之基础算法(贝叶斯网络)

目录朴素贝叶斯网络朴素贝叶斯网络的假设朴素贝叶斯网络的推导高斯朴素贝叶斯网络多项分布朴素贝叶斯网络贝叶斯网络贝叶斯网络的简单结构贝叶斯网络的形式化定义不同独立条件下的贝叶斯网络朴素贝叶斯网络朴素贝叶斯网络的假设朴素贝叶斯网络的推导高斯朴素贝叶斯网络多项分布朴素贝叶斯网络贝叶斯网络贝叶斯网络的简单结构贝叶斯网络的形式化定义不同独立条件下的贝叶斯网络...

2020-04-20 20:28:49 527

原创 机器学习之基础算法(EM算法)

目录高斯混合模型GMM通过实例直观解释GMM建立目标函数第一步 估算数据来自那个组份第二步 估计每个组份的参数EM算法高斯混合模型GMM通过实例直观解释GMM建立目标函数第一步 估算数据来自那个组份第二步 估计每个组份的参数EM算法...

2020-04-19 21:53:32 312

原创 机器学习之基础算法(聚类算法)

目录K-means聚类聚类的定义相似度或距离计算方法总结聚类的基本思想K-means聚类算法总结聚类的衡量标准层次聚类方法密度聚类方法DBSCAN算法相关概念K-means聚类聚类的定义相似度或距离计算方法总结聚类的基本思想K-means聚类算法总结聚类的衡量标准层次聚类方法密度聚类方法DBSCAN算法相关概念...

2020-04-18 17:22:01 215

原创 机器学习之基本算法(支持向量机SVM)

目录线性可分支持向量机分割超平面基本的符号及相关概念推导目标函数线性支持向量机线性支持向量机的目标函数线性可分支持向量机分割超平面基本的符号及相关概念推导目标函数指的是线性支持向量机C越大,线性支持向量机就会变成线性可分支持向量机C越大,过渡区域越窄线性支持向量机的目标函数...

2020-04-17 21:06:27 272

原创 机器学习之基础算法(提升)

目录第一部分 提升提升的概念梯度提升方法 GBDT梯度提升算法推导总结XGBoost决策树的描述正则项的定义XGBoost算法的推导总结Adaboost举例总结第二部分 代码示例第一部分 提升提升的概念梯度提升方法 GBDT梯度提升算法推导总结XGBoost决策树的描述正则项的定义XGBoost算法的推导总结Adaboost举例...

2020-04-16 17:57:06 502

原创 机器学习基础算法(决策树与随机森林)

目录第一部分 决策树决策树的基础信息熵条件熵决策树决策树的示意图决策树是什么决策树的特点决策树学习的三种生成算法ID3信息增益基本记号信息增益的计算方法C4.5CART第二部分 随机森林Bagging策略OOB数据随机森林第一部分 决策树决策树的基础信息熵信息熵表示信息的不确定性条件熵决策树决策树的示意图决策树是什么决策树的特点决策树学习的三种生成算法ID3...

2020-04-15 09:45:07 276

原创 机器学习之基础算法(回归算法)

目录第一部分 回归算法原理线性回归单个变量下的线性回归多个变量下的线性回归第一部分 回归算法原理线性回归单个变量下的线性回归多个变量下的线性回归...

2020-04-14 14:27:05 227

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除