其他线性回归,岭回归等

6 篇文章 1 订阅
2 篇文章 0 订阅

 

目录

 

普通最小二乘法

范数

岭回归

正则化:

L1正则化

L2正则化

套索回归

 弹性网络

多任务套索

其他回归模型代码演示:

导包

加载糖尿病数据

训练

线性模型

回归问题得分计算规则

使用岭回归

交叉验证


普通最小二乘法

 

范数

范数(norm)是数学中的一种基本概念。在泛函分析中,它定义在赋范线性空间中,并满足一定的条件,即①非负性;②齐次性;③三角不等式。它常常被用来度量某个向量空间(或矩阵)中的每个向量的长度或大小。将数视为向量。

当p取1,2,无穷的时候分别是以下几种最简单的情形:

1-范数:║x║1=│x1│+│x2│+…+│xn│

2-范数:║x║2=(│x1│2+│x2│2+…+│xn│2)1/2

∞-范数:║x║∞=max(│x1│,│x2│,…,│xn│)

其中2-范数就是通常意义下的距离。

对于这些范数有以下不等式:║x║∞ ≤ ║x║2 ≤ ║x║1 ≤ n1/2║x║2 ≤ n║x║∞

另外,若p和q是赫德尔(Hölder)共轭指标,即1/p+1/q=1,那么有赫德尔不等式:

|<x,y>| = ||xH*y| ≤ ║x║p║y║q

当p=q=2时就是柯西-许瓦兹(Cauchy-Schwarz)不等式。

岭回归

Ridge回归通过对系数的大小进行惩罚来解决普通最小二乘的一些问题 。脊系数使受惩罚的残差平方和最小化:

 
 
 
复杂度参数  α≥0 控制收缩量:值越大 α,收缩量越大,系数对共线性的鲁棒性越强 ,防止过拟合。
无论w是大于0还是小于0,图像都逐渐向0靠近。
 
 
与其他线性模型一样, Ridge将采用其 fit方法数组X,y并存储系数 w线性模型的 coef_成员
 

正则化:

 
机器学习中,如果参数过多,模型过于复杂,容易造成过拟合(overfit)。即模型在训练样本数据上表现的很好,但在实际测试样本上表现的较差,不具备良好的泛化能力。为了避免过拟合,最常用的一种方法是使用使用正则化,例如 L1 和 L2 正则化。
 
 
欠拟合:没有学习够,还欠一点火候。解决方法:增加学习次数,复杂化模型。
过拟合:方程太复杂,系数多,系数大。解决方法:将方程变得简单一些或者减小系数。
 

L1正则化

L1正则化,即原损失函数 + 所有权重的平均绝对值 * λ ,其中λ >0

 

L2正则化

 L2正则化,即原损失函数 + 所有权重平方和的平均值 * λ / 2 , λ>0
 
 
 

 

套索回归

 

估计稀疏系数线性模型。由于它倾向于使用具有较少非零系数的解决方案的趋势,因此在某些情况下很有用,从而有效地减少了给定解决方案所依赖的特征数量。因此,套索及其变体对于压缩感测领域至关重要。在某些条件下,它可以恢复非零系数的确切集合(请参阅  压缩感测:使用L1先验(Lasso)进行层析成像重建)。

从数学上讲,它由带有正则化项的线性模型组成。最小化的目标函数是:

minw12nsamples||Xw−y||22+α||w||1

套索估计因此解决了最小二乘罚分的最小化 α||w||1 添加,在哪里 α 是一个常数, ||w||1 是个 ℓ1-系数向量的范数。

拟合的时候,拟合函数的系数往往非常大,为什么?如下图所示,过拟合,就是拟合函数需要顾忌每一个点,最终形成的拟合函数波动很大。在某些很小的区间里,函数值的变化很剧烈。这就意味着函数在某些小区间里的导数值(绝对值)非常大,由于自变量值可大可小,所以只有系数足够大,才能保证导数值很大。

而正则化是通过约束参数的范数使其不要太大,所以可以在一定程度上减少过拟合情况。

 弹性网络

弹性网络 是一种使用 L1, L2 范数作为先验正则项训练的线性回归模型。 这种组合允许拟合到一个只有少量参数是非零稀疏的模型,就像 Lasso 一样,但是它仍然保持了一些类似于 Ridge 的正则性质。我们可利用 l1_ratio 参数控制 L1 和 L2 的凸组合。

弹性网络在很多特征互相联系的情况下是非常有用的。Lasso 很可能只随机考虑这些特征中的一个,而弹性网络更倾向于选择两个。

在实践中,Lasso 和 Ridge 之间权衡的一个优势是它允许在循环过程(Under rotate)中继承 Ridge 的稳定性。

在这里,最小化的目标函数是

\underset{w}{min\,} { \frac{1}{2n_{samples}} ||X w - y||_2 ^ 2 + \alpha \rho ||w||_1 +\frac{\alpha(1-\rho)}{2} ||w||_2 ^ 2}

多任务套索

MultiTaskLasso是,估计多个回归问题共同稀疏系数的线性模型:y是形状的2D阵列。约束条件是所有回归问题(也称为任务)的所选特征都相同。(n_samples, n_tasks)下图比较了通过简单套索或MultiTaskLasso获得的系数矩阵W中非零项的位置。套索估计产生分散的非零值,而MultiTaskLasso的非零值是完整的列。

 

其他回归模型代码演示:

导包

import numpy as np

import matplotlib.pyplot as plt
%matplotlib inline

from sklearn.model_selection import train_test_split

#均方误差
from sklearn.metrics import mean_squared_error,r2_score
from sklearn import datasets

# CV crosss validation :交叉验证
from sklearn.linear_model import LinearRegression,Ridge,Lasso,ElasticNet,ElasticNetCV,LassoCV

加载糖尿病数据

diabetes = datasets.load_diabetes()
X = diabetes['data']
y = diabetes['target']

训练

X_train,X_test,y_train,y_test = train_test_split(X,y,test_size = 0.15)

线性模型

lr = LinearRegression()

lr.fit(X_train,y_train)

# 回归问题的得分,不是准确率
lr.score(X_test,y_test)

回归问题得分计算规则

'''The coefficient R^2 is defined as (1 - u/v), where u is the residual
sum of squares ((y_true - y_pred) ** 2).sum() and v is the total
sum of squares ((y_true - y_true.mean()) ** 2).sum().'''


u = ((y_test - y_)**2).sum()
v = ((y_test - y_test.mean())**2).sum()
r2 = 1 - u/v
r2

score越大,算法越好。

均方误差

mean_squared_error(y_test,y_)

均方误差,越大越不好

 

使用岭回归

rigde = Ridge(alpha=0.001)#alpha越小越不好,当为0的时候,就是线性回归。

rigde.fit(X_train,y_train)

print(rigde.score(X_test,y_test))

y_ = rigde.predict(X_test)

mean_squared_error(y_test,y_)

交叉验证

from sklearn.linear_model import RidgeCV

ridgeCV = RidgeCV(alphas=np.logspace(-5,1,50),scoring='r2',cv = 6)#等比数列找最佳参数

ridgeCV.fit(X_train,y_train)

y_ = ridgeCV.predict(X_test)
r2_score(y_test,y_)

ridgeCV = RidgeCV(alphas=np.linspace(0.01,5,50),scoring='r2',cv = 6)#等差数列

ridgeCV.fit(X_train,y_train)

y_ = ridgeCV.predict(X_test)
r2_score(y_test,y_)

数值比较小的时候使用logspace,效果更好一点。

 

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值