Fio的安装与使用 Fio的安装与使用Fio的安装与使用安装使用Fio的安装与使用安装下载地址:http://freshmeat.sourceforge.net/projects/fio/安装: 1. cd fio-2.1.10/ 2. ./configure 3. Make 4. Make install使用命令顺序读:fio -filename=/mnt/pmfs/1.txt -direct=1 -iodepth 1 -thread -rw=read -ioengine=psync
Unity中如何用代码实现场景切换 Unity中如何用代码实现场景切换创建场景场景切换 Unity3D创建游戏可以这么理解,一款完整的游戏就是一个Project(项目工程),游戏中不同的地图对应的是项目下面的不同场景(Scene)。一款游戏可以包含很多地图,因此一个项目工程下面可以保存多个Scene。创建场景 依次点击菜单栏的File—> New...
matlab相关问题解决方案 matlab相关问题解决matlb中多个二维数组转化成三维数组matlb中多个二维数组转化成三维数组% 申请三维变量空间,然后赋值:比如你的两个二维数组是a1=[1,2,3;3,4,5;5,6,7];a2=[4,3,2;2,1,0;6,7,8];% 先申请变量空间;a=zeros(3,3,2)% 赋值a(:,:,1)=a1;a(:,:,2)=a2; 这时a就是你想要的3维矩阵。...
中国移动合肥移动面试总结(计算机类) 中国移动合肥分行计算机类面试 2020年11月26日,合肥现场面,分为一面群面和二面单面。该带的信息一定要带齐全,首先是身份和资料核对,签字后会发你一个号码牌。根据号码牌将10个人分为一组,进行等待一面和二面。 一面是无领导小组面(10个人一组,给一个题目,让我们看了思考3分钟,对材料所提的要素进行排序,之后每个人1分钟阐述观点,再进行15分
科大讯飞测试开发工程师面试 科大讯飞测试开发工程师面试总结笔试面试笔试 科大讯飞的测试开发笔试题分为2大部分:20道选择题和2道编程题。我是线上考的,笔记本开摄像头,手机也要被监控。考察的内容包括数据库,计算机网络,设计模式,编程相关的知识。2道大题编程题分别是一道排序题和一道动态规划题。面试 2020年11月25日下午4点,腾讯会议视频面试,一位面试官,基本问的就是你所投岗位技术相关的问
python相关问题解决方案 关于pip安装与卸载第三方包的问题pip安装提速(清华镜像)python的包管理器pip一些常用用法pip安装提速(清华镜像) sklearn是完成机器学习最常用的库。此库封装了很多种机器学习算法,算法的细节都被封装在库里面,我们使用时只需要调用它的接口就可以了。数据集见我上一篇博客的链接。 最后结果如下:python的包管理器pip一些常用用法  
中国银行软件中心信息技术岗(北京 )面试 中国银行软件中心信息技术岗(北京 )面试 面试时间:11月5日下午3:30 10月底收到中国银行面试通知,需要填写问卷调查,上传健康码截图,会在四个软件中心就近给你安排一个场地进行面试,之后会收到邮件通知,面试地点、面试形式(中文面试)、时间、需要带的材料(一定要核查一遍是否带齐),然后最好穿正装。下面讲一下面试过程。 &nbs
江波龙测试工程师面试 江波龙测试工程师面试 腾讯会议视频面试,两位面试官,一位是测试总监(开语音和摄像头,可见),另一位全程没有开摄像头和语音。下面讲一下面试过程。 首先自我介绍。 自我介绍完,就开始问问题了,下面对所问问题做一个总结:问题1:芯片测试怎么做?问题2:U盘测试怎么做?问题3:简单讲一下W模型?
中国移动云能力中心校招面试总结(三面) 测试/测试开发工程师面试总结(三面) 腾讯会议视频面试,一位面试官,基本问的就是你所投岗位技术相关的问题。下面讲一下我三面的全过程。 首先自我介绍。 自我介绍完,就开始问问题了,下面对所问问题做一个总结:问题1:你的自我介绍里面没有讲到你在技术方面是如何能胜任这个岗位的,你觉得在技术方面,你
中国移动云能力中心校招面试总结(二面) 测试/测试开发工程师面试总结(二面HR面) 腾讯会议进行视频面试,有一个等待过程。进去会议后有一位面试官。下面讲一下我二面的全过程。 首先,打开视频过后,面试官让我对着镜头走一圈(虽然有点不懂,但是可能是想看看仪态什么的吧),接着就是自我介绍了,全程也没有限制我的时间,直到我讲完。我觉得面试官人挺好的。嘻嘻O(∩_∩)O。 &nb
中国移动云能力中心校招面试总结(一面) 中移(苏州)测试/测试开发岗自我介绍面试问题 手机腾讯会议进行视频面试,有2个面试官(刚进去的时候我还以为另一个也是求职者呢,还脑补了一些情节,O(∩_∩)O哈哈~),面试内容流程如下:自我介绍 自我介绍时间限制在3分钟,这个内容因人而异。面试问题 基本上是根据你的简历内容去问,不排除面试官
Matlab中使用psychtoolbox编写刺激界面 Matlab语言代码基础 此篇matlab语言基础代码的整理是ZJU心橙园制作的,视频地址可见:https://www.bilibili.com/video/av78309804?p=2%语言代码基础% 常用命令clear 清除工作空间中的所有变量clear x 清除工作空间中的变量xclc 清屏help 帮助...
逻辑回归 逻辑回归(Logistic Regression逻辑回归预测函数决策边界逻辑回归代价函数逻辑回归正则化 逻辑回归是解决分类问题的,如垃圾邮件分类、预测肿瘤是良性还是恶性、预测某人的信用是否良好等等。逻辑回归中有一个函数叫做Sigmoid Function或者Logistic Function,其中θ是参数矩阵,x是特征矩阵。如下:逻辑回归预...
岭回归(Ridge Regression) 岭回归(Ridge Regression)岭回归基本原理sklearn实现岭回归标准方程法实现岭回归岭回归基本原理 岭回归的代价函数加入了一个L2正则项(没有正则项的是无偏估计,加入正则项的代价函数为有偏估计),最后一个正则项系数label与前面的岭系数label不一样。下面是岭回归的代价函数: &nb...
特征缩放、交叉验证法、过拟合、正则化 特指缩放、交叉验证法、过拟合、正则化特征缩放交叉验证法过拟合(Overfitting)正则化(Regularized)特征缩放 可以看到上面的例子,当数据不一致时,即类型和单位不一致时,会造成画的图像取的单元格大小相差很大,使用梯度下降法寻找全局最小值时的效果就不尽人意,所以为了解决这个问题,最好对数据进行处理,即进行数据的特征缩放,特征...
标准方程法 标准方程法 Normal Equation标准方程法原理线性回归实现标准方程法标准方程法原理 标准安全法与梯度下降法都是用来解决线性回归的方法。假如有一个代价函数J(θ),画出图像如下图,可以看到这个代价函数有一个全局最小值,通过求导,令导数为0,可以求出θ1、θ2……的值。 可以看...
sklearn实现多项式回归 多项式回归 一个数据集,用散点图画出来如下图,可以看到此时用一条直线(或者超平面)是不能拟合的,所以需要用一个多项式表示的曲线(或者超曲面)才能得到更好的拟合结果。 下面可以看一个例子:有不同职位,分成10个等级,不同等级的工资不同,可以根据等级(横坐标)和工资(纵坐标)来画一个散...
sklearn实现一元线性回归 sklearn实现一元线性回归 sklearn是完成机器学习最常用的库。此库封装了很多种机器学习算法,算法的细节都被封装在库里面,我们使用时只需要调用它的接口就可以了。 from sklearn.linear_model import LinearRegression import numpy as np import matplot...
梯度下降法实现一元线性回归 梯度下降法实现一元线性回归 给定一个数据集,该数据集是n行2列的数据。当用记事本打开数据时,每行的2列数据是用逗号隔开的。首先要提取文件里面的数据,之后根据提取的数据进行画图。 数据集见链接:https://pan.baidu.com/s/1Bhn47ynrNaPO_eG191VuUw&...