PaddleOCR:GPU环境依赖踩坑全记录

背景

PaddlePaddle这东西的适配性做得很差,运行环境对包版本经常很严格。我们今天要处理的问题是复现一份基于paddleocr的代码,要求支持cpu推理和gpu单卡推理。

情况摸排

  1. 根据项目其他依赖,选择使用3.8版本的python.
  2. 通过前置测试,确定代码依赖paddlepaddle=2.5.2, paddleocr=2.0.1,在此环境下cpu推理成功。因此,我们为GPU推理选择安装2.5.2版本的paddlepaddle-gpu.

注意,如果是从头开始开发,建议直接选取最新版本的paddle和paddleocr,然后在后续开发中保持版本不变。

  1. 运行环境是实体宿主机,cuda版本12.0,安装位置在/usr/local/cuda/binnvcc -V显示正常。

安装方式

  1. 根据Paddle2.5官方文档,CUDA 工具包 12.0 配合 cuDNN v8.9.1. 这个链接同时提供了 CUDA12.0 包含 cuDNN 动态链接库的 PaddlePaddle安装方式。
pip install paddlepaddle-gpu
对于在CentOS上配置PaddleOCRGPU环境,以下是一般的步骤: 1. 检查NVIDIA驱动:首先,确保您的GPU驱动程序已正确安装和配置。您可以使用`nvidia-smi`命令来验证驱动程序是否正常工作。 2. 安装CUDA Toolkit:PaddleOCR需要CUDA Toolkit来与GPU进行通信。您可以从NVIDIA官方网站下载适用于您的GPU的CUDA Toolkit,并按照官方文档进行安装。 3. 安装cuDNN库:cuDNN是加速深度学习的GPU库。您需要从NVIDIA开发者网站下载适用于您的CUDA版本的cuDNN库,并按照官方文档进行安装。 4. 创建虚拟环境(可选):为了隔离PaddleOCR依赖环境,您可以使用conda、virtualenv等工具创建一个虚拟环境。 5. 安装PaddlePaddlePaddleOCR是基于PaddlePaddle深度学习框架开发的。您可以使用pip或conda安装PaddlePaddle,具体安装命令可以参考PaddlePaddle官方文档。 6. 安装PaddleOCR:一旦PaddlePaddle安装完成,您可以使用pip安装PaddleOCR。运行以下命令即可: ``` pip install paddlepaddle paddleocr ``` 7. 配置环境变量:为了正确使用PaddleOCR,您需要将PaddlePaddlePaddleOCR的路径添加到系统环境变量中。具体方法取决于您使用的操作系统和shell。 完成上述步骤后,您就成功配置了CentOS上的PaddleOCR GPU环境。您可以根据PaddleOCR文档提供的示例代码来运行OCR任务。请注意,具体的配置步骤可能因您的系统环境和需求而有所不同,建议参考相关文档和资源进行配置。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值