斐波拉切数列研究

斐波拉契数列的相邻数比值随着序号增加趋近于黄金分割比,揭示了数学中无理数与整数的奇妙结合。通过数列1, 1, 2, 3, 5, 8, 13, 21...的研究,可以明显看出这一现象。虽然初期比值为有理数,但随着数列的扩展,它们极其接近0.618...,即黄金分割比例。" 121005412,9092572,自适应过滤法预测时间序列解析,"['统计预测', '数据分析', '机器学习', '算法', '预测模型']

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

斐波拉契(Fibonacci)数列来源于 兔子问题 ,它有一个递推关系,
  f(1)=1 
  f(2)=1 
  f(n)=f(n-1)+f(n-2),其中n>=2 
  {f(n)}即为斐波拉契数列。
   ■斐波拉契数列的公式
   它的通项公式为:{[(1+√5)/2]^n - [(1-√5)/2]^n }/√5 (注:√5表示根号5) 
   ■斐波拉契数列的某些性质
  ■1),f(n)f(n)-f(n+1)f(n-1)=(-1)^n;
  ■2), f(1)+f(2)+f(3)+……+f(n)=f(n+2)-1 

  ■3),arctan[1/f(2n+1)]=arctan[1/f(2n+2)]+arctan[1/f(2n+3)]

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值