8.4 计算式查找(哈希表的构造)
哈希法又称散列法、杂凑法或关键字地址计算法等,相应的表称为哈希表、散列表、杂凑表等。
这种方法的基本思想是:首先在元素的关键字 k 和元素的存储位置 p 之间建立一个对应关系 H,使得 p=H (k),H 称为哈希函数。创建哈希表时,把关键字为 k 的元素直接存入地址为 H (k)的单元;以后当查找关键字为 k 的元素时,再利用哈希函数计算出该元素的存储位置 p=H (k),从而达到按关键字直接存取元素的目的。
当关键字集合很大时,关键字值不同的元素可能会映象到哈希表的同一地址上,即 k1≠k2 ,但 H(k1)=H(k2),这种现象称为冲突,此时称 k1 和 k2 为同义词。实际中,冲突是不可避免的,只能通过改进哈希函数的性能来减少冲突。
综上所述,哈希法主要包括以下两方面的内容:
- 1) 如何构造哈希函数
- 2) 如何处理冲突。
一、哈希函数的构造方法
构造哈希函数的原则是:①函数本身便于计算;②计算出来的地址分布均匀,即对任一关键字 k,H (k) 对应不同地址的概率相等,目的是尽可能减少冲突。
下面介绍构造哈希函数常用的五种方法。
1、数字分析法
如果事先知道关键字集合,并且每个关键字的位数比哈希表的地址码位数多时,可以从关键字中选出分布较均匀的若干位,构成哈希地址。例如,有 80 个记录,关键字为 8 位十进制整数 d1d2d3…d7d8,如哈希表长度取为 100,则哈希表的地址空间为:0~99。假设经过分析,各关键字中 d4和 d7的取值分布较均匀,则哈希函数为:H (key)= H (d1d2d3…d7d8)=d4d7。例如,H (81346532)=43,H (81301367)=06。相反,假设经过分析,各关键字中 d1和 d8的取值分布极不均匀, d1 都等于 5,d8 都等于 2,此时,如果哈希函数为:H (key)= H(d1d2d3…d7d8)=d1d8,则所有关键字的地址码都是 52,显然不可取。
2、平方取中法
当无法确定关键字中哪几位分布较均匀时,可以先求出关键字的平方值,然后按需要取平方值的中间几位作为哈希地址。这是因为:平方后中间几位和关键字中每一位都相关,故不同关键字会以较高的概率产生不同的哈希地址。
例:我们把英文字母在字母表中的位置序号作为该英文字母的内部编码。例如 K 的内部编码为 11,E 的内部编码为 05,Y 的内部编码为 25,A 的内部编码为 01, B 的内部编码为 02。由此组成关键字“KEYA”的内部代码为 11052501,同理我们可以得到关键字“KYAB”、“AKEY”、“BKEY”的内部编码。之后对关键字进行平方运算后,取出第 7 到第 9 位作为该关键字哈希地址,如下图所示。
3、分段叠加法
这种方法是按哈希表地址位数将关键字分成位数相等的几部分(最后一部分可以较短),然后将这几部分相加,舍弃最高进位后的结果就是该关键字的哈希地址。
具体方法有折叠法与移位法。
移位法是将分割后的每部分低位对齐相加,折叠法是从一端向另一端沿分割界来回折叠(奇数段为正序,偶数段为倒序),然后将各段相加。例如:key=12360324711202065,哈希表长度为 1000,则应把关键字分成 3 位一段,在此舍去最低的两位 65,分别进行移位叠加和折叠叠加,求得哈希地址为 105 和 907,如下图所示。
4. 除留余数法
假设哈希表长为 m,p 为小于等于 m 的最大素数,则哈希函数为h(k)=k % p ,其中%为模 p 取余运算。
例如,已知待散列元素为(18,75,60,43,54,90,46),表长 m=10,p=7,则有
h(18)=18 % 7=4 h(75)=75 % 7=5 h(60)=60 % 7=4
h(43)=43 % 7=1 h(54)=54 % 7=5 h(90)=90 % 7=6
h(46)=46 % 7=4
此时冲突较多。为减少冲突,可取较大的 m 值和 p 值,如 m=p=13,结果如下:
h(18)=18 % 13=5 h(75)=75 % 13=10 h(60)=60 % 13=8
h(43)=43 % 13=4 h(54)=54 % 13=2 h(90)=90 % 13=12
h(46)=46 % 13=7
此时没有冲突,如下图所示。
5、伪随机数法
采用一个伪随机函数做哈希函数,即 H(key)=random(key)。
在实际应用中,应根据具体情况,灵活采用不同的方法,并用实际数据测试它的性能,
以便做出正确判定。通常应考虑以下五个因素 :
- 计算哈希函数所需的时间。
- 关键字的长度。
- 哈希表的大小。
- 关键字分布的情况。
- 记录查找的频率
二、处理冲突的方法
通过构造性能良好的哈希函数,可以减少冲突,但一般不可能完全避免冲突,因此解决冲突是哈希法的另一个关键问题。创建哈希表和查找哈希表都会遇到冲突,两种情况下解决冲突的方法应该一致。下面以创建哈希表为例,说明解决冲突的方法。
常用的解决冲突方法有以下四种:
1. 开放定址法
这种方法也称再散列法,其基本思想是:当关键字 key 的初始哈希地址 h0= H(key)出现冲突时,以 h0为基础,产生另一个地址 h1,如果 h1仍然冲突,再以 h0为基础,产生另一个哈希地址 h2,…,直到找出一个不冲突的地址 hi ,将相应元素存入其中。这种方法有一个通用的再散列函数形式:
hi=(H(key)+di)% m i=1,2,…,n
或:
hi=(h0 + di)% m i=1,2,…,n
其中 H(key)为哈希函数,h0=H(key),m 为表长,di 称为增量序列。增量序列的取值方式不同,相应的再散列方式也不同。主要有以下三种:
- 线性探测再散列
di=1,2,3,…,m-1
这种方法的特点是:冲突发生时,顺序查看表中下一单元,直到找出一个空单元或查遍全表。 - 二次探测再散列
di=12,-12,22,-22,…,k2,-k2 ( k<=m/2 )
这种方法的特点是:冲突发生时,在表的左右进行跳跃式探测,比较灵活。 - 伪随机探测再散列
di=伪随机数序列。
具体实现时,应建立一个伪随机数发生器,(如 i=(i+p) % m),并给定一个随机数做起点。
例如,已知哈希表长度 m=12,哈希函数为:H(key)= key % 11,则 H(47)=3,H(26)=4,H(60)=5,假设下一个关键字为 69,则 H(69)=3,与 47 冲突。如果用线性探测再散列处理冲突,下一个哈希地址为 h1=(3 + 1)% 12 = 4,仍然冲突,再找下一个哈希地址为 h2=(3 + 2)% 12 = 5,还是冲突,继续找下一个哈希地址为 h3=(3 + 3)% 12 = 6,此时不再冲突,将 69 填入 6 号单元,参下图(a)。如果用二次探测再散列处理冲突,下一个哈希地址为 h1=(3 + 12)% 12 = 4,仍然冲突,再找下一个哈希地址为 h2=(3 - 12)% 12 = 2,此时不再冲突,将 69 填入 2 号单元,参下图(b)。如果用伪随机探测再散列处理冲突,且伪随机数序列为:2,5,9,………,则下一个哈希地址为 h1=(3 + 2)% 12 = 5,仍然冲突,再找下一个哈希地址为 h2=(3 + 5)% 12 = 8,此时不再冲突,将 69 填入 8 号单元,如下图©。
从上述例子可以看出,线性探测再散列容易产生“二次聚集”,即在处理同义词的冲突时又导致非同义词的冲突。例如,当表中 i, i+1 ,i+2 三个单元已满时,下一个哈希地址为 i, 或i+1 ,或 i+2,或 i+3 的元素,都将填入 i+3 这同一个单元,而这四个元素并非同义词。线性探测再散列的优点是:只要哈希表不满,就一定能找到一个不冲突的哈希地址,而二次探测再散列和伪随机探测再散列则不一定。
如果要在上述哈希表中删除一个记录,则需要在该记录的位置上填入一个特殊记录,否则将无法找到在其后填入的同义词记录。
2. 再哈希法
这种方法是同时构造多个不同的哈希函数:
Hi=RHi(key) i=1,2,…,k
当哈希地址 H1=RH1(key)发生冲突时,再计算 H2=RH2(key)……,直到冲突不再产生。这种方法不易产生聚集,但增加了计算时间。
3. 链地址法
这种方法的基本思想是将所有哈希地址为 i 的元素构成一个称为同义词链的单链表,并将单链表的头指针存在哈希表的第 i 个单元中,因而查找、插入和删除主要在同义词链中进行。链地址法适用于经常进行插入和删除的情况。
例:已知一组关键字(32,40,36,53,16,46,71,27,42,24,49,64),哈希表长度为 13,哈希函数为:H(key)= key % 13,给出用链地址法处理冲突的结果,计算平均查找长度。如下图所示:
平均查找长度 ASL=(17+24+3*1)/12=1.5
4. 建立公共溢出区
这种方法的基本思想是:将哈希表分为基本表和溢出表两部分,凡是和基本表发生冲突的元素一律填入溢出表。