时间复杂度

时间复杂度分析统计的不是算法运行时间,而是算法运行时间随着数据量变大时的增长趋势

“时间增长趋势”这个概念比较抽象,我们通过一个例子来加以理解。假设输入数据大小为 n ,给定三个算法 ABC

// 算法 A 的时间复杂度:常数阶
void algorithm_A(int n) {
    printf("%d", 0);
}
// 算法 B 的时间复杂度:线性阶
void algorithm_B(int n) {
    for (int i = 0; i < n; i++) {
        printf("%d", 0);
    }
}
// 算法 C 的时间复杂度:常数阶
void algorithm_C(int n) {
    for (int i = 0; i < 1000000; i++) {
        printf("%d", 0);
    }
}

图 2-7 展示了以上三个算法函数的时间复杂度。

  • 算法 A 只有 1 个打印操作,算法运行时间不随着 n 增大而增长。我们称此算法的时间复杂度为“常数阶”。
  • 算法 B 中的打印操作需要循环 n 次,算法运行时间随着 n 增大呈线性增长。此算法的时间复杂度被称为“线性阶”。
  • 算法 C 中的打印操作需要循环 1000000 次,虽然运行时间很长,但它与输入数据大小 n 无关。因此 C 的时间复杂度和 A 相同,仍为“常数阶”。

图 2-7 算法 A、B 和 C 的时间增长趋势

相较于直接统计算法的运行时间,时间复杂度分析有哪些特点呢?

  • 时间复杂度能够有效评估算法效率。例如,算法 B 的运行时间呈线性增长,在 n>1 时比算法 A 更慢,在 n>1000000 时比算法 C 更慢。事实上,只要输入数据大小 n 足够大,复杂度为“常数阶”的算法一定优于“线性阶”的算法,这正是时间增长趋势的含义。
  • 时间复杂度的推算方法更简便。显然,运行平台和计算操作类型都与算法运行时间的增长趋势无关。因此在时间复杂度分析中,我们可以简单地将所有计算操作的执行时间视为相同的“单位时间”,从而将“计算操作运行时间统计”简化为“计算操作数量统计”,这样一来估算难度就大大降低了。
  • 时间复杂度也存在一定的局限性。例如,尽管算法 AC 的时间复杂度相同,但实际运行时间差别很大。同样,尽管算法 B 的时间复杂度比 C 高,但在输入数据大小 n 较小时,算法 B 明显优于算法 C 。对于此类情况,我们时常难以仅凭时间复杂度判断算法效率的高低。当然,尽管存在上述问题,复杂度分析仍然是评判算法效率最有效且常用的方法。

2.3.2 函数渐近上界

给定一个输入大小为 n 的函数:

void algorithm(int n) {
    int a = 1;  // +1
    a = a + 1;  // +1
    a = a * 2;  // +1
    // 循环 n 次
    for (int i = 0; i < n; i++) {   // +1(每轮都执行 i ++)
        printf("%d", 0);            // +1
    }
}

设算法的操作数量是一个关于输入数据大小 n 的函数,记为 T(n) ,则以上函数的操作数量为:

T(n)=3+2n

T(n) 是一次函数,说明其运行时间的增长趋势是线性的,因此它的时间复杂度是线性阶。

我们将线性阶的时间复杂度记为 O(n) ,这个数学符号称为大 O 记号(big-O notation),表示函数 T(n) 的渐近上界(asymptotic upper bound)。

时间复杂度分析本质上是计算“操作数量 T(n)”的渐近上界,它具有明确的数学定义。

函数渐近上界

若存在正实数 c 和实数 n0 ,使得对于所有的 n>n0 ,均有 T(n)≤c⋅f(n) ,则可认为 f(n) 给出了 T(n) 的一个渐近上界,记为 T(n)=O(f(n)) 。

如图 2-8 所示,计算渐近上界就是寻找一个函数 f(n) ,使得当 n 趋向于无穷大时,T(n) 和 f(n) 处于相同的增长级别,仅相差一个常数项 c 的倍数。

图 2-8 函数的渐近上界

2.3.3 推算方法

根据定义,确定 f(n) 之后,我们便可得到时间复杂度 O(f(n)) 。那么如何确定渐近上界 f(n) 呢?总体分为两步:首先统计操作数量,然后判断渐近上界。

1. 第一步:统计操作数量

针对代码,逐行从上到下计算即可。然而,由于上述 c⋅f(n) 中的常数项 c 可以取任意大小,因此操作数量 T(n) 中的各种系数、常数项都可以忽略。根据此原则,可以总结出以下计数简化技巧。

  1. 忽略 T(n) 中的常数项。因为它们都与 n 无关,所以对时间复杂度不产生影响。
  2. 省略所有系数。例如,循环 2n 次、5n+1 次等,都可以简化记为 n 次,因为 n 前面的系数对时间复杂度没有影响。
  3. 循环嵌套时使用乘法。总操作数量等于外层循环和内层循环操作数量之积,每一层循环依然可以分别套用第 1. 点和第 2. 点的技巧。

给定一个函数,我们可以用上述技巧来统计操作数量:

void algorithm(int n) {
    int a = 1;  // +0(技巧 1)
    a = a + n;  // +0(技巧 1)
    // +n(技巧 2)
    for (int i = 0; i < 5 * n + 1; i++) {
        printf("%d", 0);
    }
    // +n*n(技巧 3)
    for (int i = 0; i < 2 * n; i++) {
        for (int j = 0; j < n + 1; j++) {
            printf("%d", 0);
        }
    }
}

以下公式展示了使用上述技巧前后的统计结果,两者推算出的时间复杂度都为

2. 第二步:判断渐近上界

时间复杂度由 T(n) 中最高阶的项来决定。这是因为在 n 趋于无穷大时,最高阶的项将发挥主导作用,其他项的影响都可以忽略。

表 2-2 不同操作数量对应的时间复杂度

2.3.4 常见类型

1. 常数阶 O(1)

常数阶的操作数量与输入数据大小 n 无关,即不随着 n 的变化而变化。

在以下函数中,尽管操作数量 size 可能很大,但由于其与输入数据大小 n 无关,因此时间复杂度仍为 O(1) :

/* 常数阶 */
int constant(int n) {
    int count = 0;
    int size = 100000;
    int i = 0;
    for (int i = 0; i < size; i++) {
        count++;
    }
    return count;
}

2. 线性阶 O(n)

线性阶的操作数量相对于输入数据大小 n 以线性级别增长。线性阶通常出现在单层循环中:

/* 线性阶 */
int linear(int n) {
    int count = 0;
    for (int i = 0; i < n; i++) {
        count++;
    }
    return count;
}

遍历数组和遍历链表等操作的时间复杂度均为 O(n) ,其中 n 为数组或链表的长度:

/* 线性阶(遍历数组) */
int arrayTraversal(int *nums, int n) {
    int count = 0;
    // 循环次数与数组长度成正比
    for (int i = 0; i < n; i++) {
        count++;
    }
    return count;
}

值得注意的是,输入数据大小 n 需根据输入数据的类型来具体确定。比如在第一个示例中,变量 n 为输入数据大小;在第二个示例中,数组长度 n 为数据大小。

3. 平方阶 O(n2)

平方阶的操作数量相对于输入数据大小 n 以平方级别增长。平方阶通常出现在嵌套循环中,外层循环和内层循环的时间复杂度都为 O(n) ,因此总体的时间复杂度为 O(n2) :

/* 平方阶 */
int quadratic(int n) {
    int count = 0;
    // 循环次数与数据大小 n 成平方关系
    for (int i = 0; i < n; i++) {
        for (int j = 0; j < n; j++) {
            count++;
        }
    }
    return count;
}

以冒泡排序为例,外层循环执行 n−1 次,内层循环执行 n−1、n−2、…、2、1 次,平均为 n/2 次,因此时间复杂度为 O((n−1)n/2)=O(n2) :

/* 平方阶(冒泡排序) */
int bubbleSort(int *nums, int n) {
    int count = 0; // 计数器
    // 外循环:未排序区间为 [0, i]
    for (int i = n - 1; i > 0; i--) {
        // 内循环:将未排序区间 [0, i] 中的最大元素交换至该区间的最右端
        for (int j = 0; j < i; j++) {
            if (nums[j] > nums[j + 1]) {
                // 交换 nums[j] 与 nums[j + 1]
                int tmp = nums[j];
                nums[j] = nums[j + 1];
                nums[j + 1] = tmp;
                count += 3; // 元素交换包含 3 个单元操作
            }
        }
    }
    return count;
}

4. 指数阶 O(2n)

生物学的“细胞分裂”是指数阶增长的典型例子:初始状态为 1 个细胞,分裂一轮后变为 2 个,分裂两轮后变为 4 个,以此类推,分裂 n 轮后有 2n 个细胞。

图 2-11 和以下代码模拟了细胞分裂的过程,时间复杂度为 O(2n) 。请注意,输入 n 表示分裂轮数,返回值 count 表示总分裂次数。

/* 指数阶(循环实现) */
int exponential(int n) {
    int count = 0;
    int bas = 1;
    // 细胞每轮一分为二,形成数列 1, 2, 4, 8, ..., 2^(n-1)
    for (int i = 0; i < n; i++) {
        for (int j = 0; j < bas; j++) {
            count++;
        }
        bas *= 2;
    }
    // count = 1 + 2 + 4 + 8 + .. + 2^(n-1) = 2^n - 1
    return count;
}

指数阶常出现于递归函数中。例如在以下代码中,其递归地一分为二,经过 n 次分裂后停止:

/* 指数阶(递归实现) */
int expRecur(int n) {
    if (n == 1)
        return 1;
    return expRecur(n - 1) + expRecur(n - 1) + 1;
}

5. 对数阶 O(log⁡n)

与指数阶相反,对数阶反映了“每轮缩减到一半”的情况。设输入数据大小为 n ,由于每轮缩减到一半,因此循环次数是 log2⁡n ,即 2n 的反函数。

/* 对数阶(循环实现) */
int logarithmic(int n) {
    int count = 0;
    while (n > 1) {
        n = n / 2;
        count++;
    }
    return count;
}

与指数阶类似,对数阶也常出现于递归函数中。以下代码形成了一棵高度为 log2⁡n 的递归树:

/* 对数阶(递归实现) */
int logRecur(int n) {
    if (n <= 1)
        return 0;
    return logRecur(n / 2) + 1;
}

对数阶常出现于基于分治策略的算法中,体现了“一分为多”和“化繁为简”的算法思想。它增长缓慢,是仅次于常数阶的理想的时间复杂度。

6. 线性对数阶 O(nlog⁡n)

线性对数阶常出现于嵌套循环中,两层循环的时间复杂度分别为 O(log⁡n) 和 O(n) 。相关代码如下:

/* 线性对数阶 */
int linearLogRecur(int n) {
    if (n <= 1)
        return 1;
    int count = linearLogRecur(n / 2) + linearLogRecur(n / 2);
    for (int i = 0; i < n; i++) {
        count++;
    }
    return count;
}

主流排序算法的时间复杂度通常为 O(nlog⁡n) ,例如快速排序、归并排序、堆排序等。

7. 阶乘阶 O(n!)

阶乘阶对应数学上的“全排列”问题。给定 n 个互不重复的元素,求其所有可能的排列方案,方案数量为:

n!=n×(n−1)×(n−2)×⋯×2×1

阶乘通常使用递归实现。如图 2-14 和以下代码所示,第一层分裂出 n 个,第二层分裂出 n−1 个,以此类推,直至第 n 层时停止分裂:

/* 阶乘阶(递归实现) */
int factorialRecur(int n) {
    if (n == 0)
        return 1;
    int count = 0;
    for (int i = 0; i < n; i++) {
        count += factorialRecur(n - 1);
    }
    return count;
}

2.3.5 最差、最佳、平均时间复杂度

相比之下,平均时间复杂度可以体现算法在随机输入数据下的运行效率,用 Θ 记号来表示。

我们通常使用最差时间复杂度作为算法效率的评判标准。

为什么很少看到 Θ 符号?

可能由于 O 符号过于朗朗上口,因此我们常常使用它来表示平均时间复杂度。但从严格意义上讲,这种做法并不规范。在本书和其他资料中,若遇到类似“平均时间复杂度 O(n)”的表述,请将其直接理解为 Θ(n)

2.4空间复杂度

空间复杂度(space complexity)用于衡量算法占用内存空间随着数据量变大时的增长趋势。这个概念与时间复杂度非常类似,只需将“运行时间”替换为“占用内存空间”。

2.4.1 算法相关空间

算法在运行过程中使用的内存空间主要包括以下几种。

  • 输入空间:用于存储算法的输入数据。
  • 暂存空间:用于存储算法在运行过程中的变量、对象、函数上下文等数据。
  • 输出空间:用于存储算法的输出数据。

一般情况下,空间复杂度的统计范围是“暂存空间”加上“输出空间”。

暂存空间可以进一步划分为三个部分。

  • 暂存数据:用于保存算法运行过程中的各种常量、变量、对象等。
  • 栈帧空间:用于保存调用函数的上下文数据。系统在每次调用函数时都会在栈顶部创建一个栈帧,函数返回后,栈帧空间会被释放。
  • 指令空间:用于保存编译后的程序指令,在实际统计中通常忽略不计。

在分析一段程序的空间复杂度时,我们通常统计暂存数据、栈帧空间和输出数据三部分,如图 2-15 所示。

图 2-15 算法使用的相关空间

/* 函数 */
int func() {
    // 执行某些操作...
    return 0;
}

int algorithm(int n) { // 输入数据
    const int a = 0;   // 暂存数据(常量)
    int b = 0;         // 暂存数据(变量)
    int c = func();    // 栈帧空间(调用函数)
    return a + b + c;  // 输出数据
}

2.4.2 推算方法

而与时间复杂度不同的是,我们通常只关注最差空间复杂度。这是因为内存空间是一项硬性要求,我们必须确保在所有输入数据下都有足够的内存空间预留。

观察以下代码,最差空间复杂度中的“最差”有两层含义。

  1. 以最差输入数据为准:当 n<10 时,空间复杂度为 O(1) ;但当 n>10 时,初始化的数组 nums 占用 O(n) 空间,因此最差空间复杂度为 O(n) 。
  2. 以算法运行中的峰值内存为准:例如,程序在执行最后一行之前,占用 O(1) 空间;当初始化数组 nums 时,程序占用 O(n) 空间,因此最差空间复杂度为 O(n) 。
void algorithm(int n) {
    int a = 0;               // O(1)
    int b[10000];            // O(1)
    if (n > 10)
        int nums[n] = {0};   // O(n)
}

int func() {
    // 执行某些操作
    return 0;
}
/* 循环的空间复杂度为 O(1) */
void loop(int n) {
    for (int i = 0; i < n; i++) {
        func();
    }
}
/* 递归的空间复杂度为 O(n) */
void recur(int n) {
    if (n == 1) return;
    return recur(n - 1);
}

2.4.3 常见类型

1. 常数阶 O(1)

常数阶常见于数量与输入数据大小 n 无关的常量、变量、对象。

需要注意的是,在循环中初始化变量或调用函数而占用的内存,在进入下一循环后就会被释放,因此不会累积占用空间,空间复杂度仍为 O(1) :

/* 函数 */
int func() {
    // 执行某些操作
    return 0;
}

/* 常数阶 */
void constant(int n) {
    // 常量、变量、对象占用 O(1) 空间
    const int a = 0;
    int b = 0;
    int nums[1000];
    ListNode *node = newListNode(0);
    free(node);
    // 循环中的变量占用 O(1) 空间
    for (int i = 0; i < n; i++) {
        int c = 0;
    }
    // 循环中的函数占用 O(1) 空间
    for (int i = 0; i < n; i++) {
        func();
    }
}

2. 线性阶 O(n)

线性阶常见于元素数量与 n 成正比的数组、链表、栈、队列等:

3. 平方阶 O(n2)

平方阶常见于矩阵和图,元素数量与 n 成平方关系:

/* 平方阶 */
void quadratic(int n) {
    // 二维列表占用 O(n^2) 空间
    int **numMatrix = malloc(sizeof(int *) * n);
    for (int i = 0; i < n; i++) {
        int *tmp = malloc(sizeof(int) * n);
        for (int j = 0; j < n; j++) {
            tmp[j] = 0;
        }
        numMatrix[i] = tmp;
    }

    // 内存释放
    for (int i = 0; i < n; i++) {
        free(numMatrix[i]);
    }
    free(numMatrix);
}
/* 平方阶(递归实现) */
int quadraticRecur(int n) {
    if (n <= 0)
        return 0;
    int *nums = malloc(sizeof(int) * n);
    printf("递归 n = %d 中的 nums 长度 = %d\r\n", n, n);
    int res = quadraticRecur(n - 1);
    free(nums);
    return res;
}

4. 指数阶 O(2n)

指数阶常见于二叉树。观察图 2-19 ,层数为 n 的“满二叉树”的节点数量为 2n−1 ,占用 O(2n) 空间:

/* 指数阶(建立满二叉树) */
TreeNode *buildTree(int n) {
    if (n == 0)
        return NULL;
    TreeNode *root = newTreeNode(0);
    root->left = buildTree(n - 1);
    root->right = buildTree(n - 1);
    return root;
}

5. 对数阶 O(log⁡n)

对数阶常见于分治算法。例如归并排序,输入长度为 n 的数组,每轮递归将数组从中点处划分为两半,形成高度为 log⁡n 的递归树,使用 O(log⁡n) 栈帧空间。

再例如将数字转化为字符串,输入一个正整数 n ,它的位数为 ⌊log10⁡n⌋+1 ,即对应字符串长度为 ⌊log10⁡n⌋+1 ,因此空间复杂度为 O(log10⁡n+1)=O(log⁡n) 。

2.4.4 权衡时间与空间

降低时间复杂度通常需要以提升空间复杂度为代价,反之亦然。我们将牺牲内存空间来提升算法运行速度的思路称为“以空间换时间”;反之,则称为“以时间换空间”。

选择哪种思路取决于我们更看重哪个方面。在大多数情况下,时间比空间更宝贵,因此“以空间换时间”通常是更常用的策略。当然,在数据量很大的情况下,控制空间复杂度也非常重要。

笔记来源:hello 算法
 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值