BZOJ2005 [Noi2010]能量采集 递推+容斥/欧拉函数

对题目手动简单分析后,可知要求

这里考虑容斥.

设f(x)表示最大公约数是x的数对个数,g(x)表示存在公约数x的数对个数.

易得g(x)=(n/x)*(m/x).

那么f(x)=g(x)-Σ(2*x<=i*x<=min(m,n))f(i*x),即g(x)减去gcd是2x,3x...的数.

从后往前递推即可.

#include<bits/stdc++.h>
#define LL long long
#define clr(x,i) memset(x,i,sizeof(x))
using namespace std;
const int N=100005;
LL n,m,f[N],ans;
int main()
{
	scanf("%lld%lld",&n,&m);
	for(LL i=min(n,m);i>0;i--)
	{
		f[i]=(n/i)*(m/i);
		for(LL j=i+i;j<=min(n,m);j+=i)
		  f[i]-=f[j];
		ans+=f[i]*(2*i-1);
	}
	printf("%lld",ans);
	return 0;
}

%%%pxy rank1...

upd:

最近学习了欧拉函数,可以化简递推式求解

讲解在这篇讲稿里有详细的 http://www.cnblogs.com/Milkor/p/4474835.html

#include <bits/stdc++.h>
#define LL long long
#define clr(x,i) memset(x,i,sizeof(x)) 
using namespace std;
const int N=100005;
LL n,m,phi[N],p[N];
void euler()
{
	for(LL i=1;i<=n;i++)
	  phi[i]=i;
	for(LL i=2;i<=n;i++)
	{
		if(phi[i]==i)
		  for(LL j=i;j<=n;j+=i)
		    phi[j]=phi[j]/i*(i-1);
	}
}
int main()
{
	scanf("%lld%lld",&n,&m);
	if(n<m)swap(n,m);
	euler();
	LL ans=0;
	for(LL i=1;i<=m;i++)
	{
		ans+=phi[i]*(n/i)*(m/i);
	}
	printf("%lld\n",ans*2-n*m);
	return 0;
}



发布了39 篇原创文章 · 获赞 4 · 访问量 9341
展开阅读全文

没有更多推荐了,返回首页

©️2019 CSDN 皮肤主题: 大白 设计师: CSDN官方博客

分享到微信朋友圈

×

扫一扫,手机浏览