#欧拉函数,整除分块#洛谷 1447 JZOJ 2225 能量采集

题目∑i=1n∑j=1m2×gcd(i,j)−1\sum_{i=1}^n\sum_{j=1}^m2\times gcd(i,j)-1i=1∑n​j=1∑m​2×gcd(i,j)−1分析原式=2×(∑i=1n∑j=1mgcd(i,j))−nm2\times(\sum_{i=1}^n\sum_{j=1}^mgcd(i,j))-nm2×(i=1∑n​j=1∑m​gcd(i,j))−nm重点就是...
摘要由CSDN通过智能技术生成

题目

∑ i = 1 n ∑ j = 1 m 2 × g c d ( i , j ) − 1 \sum_{i=1}^n\sum_{j=1}^m2\times gcd(i,j)-1 i=1nj=1m2×gcd(i,j)1


分析

原式= 2 × ( ∑ i = 1 n ∑ j = 1 m g c d ( i , j ) ) − n m 2\times(\sum_{i=1}^n\sum_{j=1}^mgcd(i,j))-nm 2×(i=1nj=1mgcd(i,j))nm
重点就是 ∑ i = 1 n ∑ j = 1 m g c d ( i , j ) \sum_{i=1}^n\sum_{j=1}^mgcd(i,j) i=1nj=1mgcd(i,j)
= ∑ i = 1 n ∑ j = 1 m ∑ k ∣ g c d ( i , j ) φ ( k ) ( 欧 拉 定 理 ) =\sum_{i=1}^n\sum_{j=1}^m\sum_{k|gcd(i,j)}\varphi(k)(欧拉定理) =i=1nj=1mkgcd(i,j)φ(k)()
= ∑ i = 1 n ∑ j = 1 m ∑ k ∣ i , k ∣ j φ ( k ) =\sum_{i=1}^n\sum_{j=1}^m\sum_{k|i,k|j}\varphi(k) =i=1nj=1mki,kjφ(k)
= ∑ k = 1 m i n ( n , m ) φ ( k ) ⌊ n k ⌋ ⌊ m k ⌋ =\sum_{k=1}^{min(n,m)}\varphi(k)\lfloor\frac{n}{k}\rfloor\lfloor\frac{m}{k}\rfloor =k=1min(n,m)φ(k)knkm
那么原式 = 2 × ∑ k = 1 m i n ( n , m ) φ ( k ) ⌊ n k ⌋ ⌊ m k ⌋ − n m =2\times\sum_{k=1}^{min(n,m)}\varphi(k)\lfloor\frac{n}{k}\rfloor\lfloor\frac{m}{k}\rfloor-nm =2×k=1min(n,m)φ(k)knkmnm
那么就可以用整除分块求解,然而也快不了多少


代码

#include <cstdio>
#define rr register
#define min(a,b) ((a)<(b)?(a):(b))
using namespace std;
typedef long long ll;
ll n,m,t,ans,phi[100001],v[100001],prime[10001],cnt;
inline void init(int N){
    phi[1]=1;
    for (rr int i=2;i<=N;++i){
        if (!v[i]) phi[i]=(prime[++cnt]=v[i]=i)-1;
        for (rr int j=1;j<=cnt&&prime[j]*i<=N;++j){
            v[i*prime[j]]=prime[j];
            if (i%prime[j]) phi[i*prime[j]]=phi[i]*(prime[j]-1);
                else {phi[i*prime[j]]=phi[i]*prime[j]; break;}
        }
    }
    for (rr int i=2;i<=N;++i) phi[i]+=phi[i-1];
}
signed main(){
    scanf("%lld%lld",&n,&m);
    init(t=min(n,m));
    for (rr ll l=1,r;l<=t;l=r+1){
        r=min(n/(n/l),m/(m/l));
        ans+=(phi[r]-phi[l-1])*(n/l)*(m/l);
    }
    printf("%lld",2*ans-n*m);
    return 0;
}
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值