【图】最短路径:弗洛伊德(Floyd)算法

特点

弗洛伊德算法是解决任意两点间的最短路径的一种算法,可以正确处理无向图有向图负权(但不可存在负权回路)的最短路径问题,同时也被用于计算有向图的传递闭包

基本思想

通过 Floyd 算法计算图 G=(V,{E}) 中各个顶点的最短路径时,需要引入两个矩阵:

  • 矩阵 D 中的元素 a[i][j] ,表示顶点 i 到顶点 j 的最短路径权值和。
  • 矩阵 P 中的元素 b[i][j],表示顶点 i 到顶点 j 经过了 b[i][j] 值对应顶点。

假设图 G 中顶点个数为 N,则需要对矩阵 D 和矩阵 P 进行 N 次更新:

  1. 初始时,矩阵 D1 中顶点 a[i][j] 的距离为顶点 i 到顶点 j 的权值(如果 i j 不相邻,则 a[i][j]= ),矩阵 P1 的值为顶点 b[i][j] j 的值。
  2. 然后,对矩阵 D 进行 N 次更新。
  3. k=0 次更新时, D0[i][j]=min{D1[i][j],D1[i][0]+D1[0][j]} ,若有更新,则对应 P0[i][j]=P0[i][0]

    • 同理,第 k 次更新时,Dk[i][j]=min{Dk1[i][j],Dk1[i][k]+D1[k][j]},若有更新,则对应 Pk[i][j]=Pk[i][k]
    • 直到 k 等于 N 结束。
    • 算法实例

      给出一个无向图:
      这里写图片描述
      1、第一步,先初始化两个矩阵 D1,P1
      这里写图片描述&&这里写图片描述
      2、k=0,即所有的顶点都经过 v0 中转,没有任何变化。
      这里写图片描述&&这里写图片描述
      3、k=1,即所有的顶点都经过 v1 中转,变化如下。
      这里写图片描述&&这里写图片描述
      4、k=2,即所有的顶点都经过 v2 中转,变化如下。
      这里写图片描述&&这里写图片描述
      5、k=3,即所有的顶点都经过 v3 中转,变化如下。
      这里写图片描述&&这里写图片描述
      6、k=4,即所有的顶点都经过 v4 中转,变化如下。
      这里写图片描述&&这里写图片描述
      。。。
      7、当k=8时,两矩阵数据如图:
      这里写图片描述&&这里写图片描述

      实现

      /* 图 邻接矩阵 */
      function Graph(v) {
          this.v = v;
          this.e = [];
          //边数组初始化
          for (var i = 0; i < this.v.length; i++) {
              this.e[i] = [];
              for (var j = 0; j < this.v.length; j++) {
                  if (i === j) {
                      this.e[i][j] = 0;
                  } else {
                      this.e[i][j] = 65535;
                  }
              }
          }
      
          this.D = [];
          this.P = [];
      }
      
      Graph.prototype.addEdge = function (v1, v2, data) {
          this.e[v1][v2] = data;
          this.e[v2][v1] = data;
      }
      
      Graph.prototype.shortestPath_Floyd = function () {
          /* 初始化 D 与 P */
          this.D = this.e; /* D为路径的权值 */
          for (i = 0; i < this.v.length; i++) {
              this.P[i] = [];
              for (var j = 0; j < this.v.length; j++) {
                  this.P[i][j] = j;
              }
          }
      
          var i, j, k;
          for (k = 0; k < this.v.length; k++) {
              for (i = 0; i < this.v.length; i++) {
                  for (j = 0; j < this.v.length; j++) {
                      /* 如果经过下标为 k 顶点路径比原两点间路径更短 */
                      if (this.D[i][j] > this.D[i][k] + this.D[k][j]) {
                          /* 将当前两点间权值设为更小的一个 */
                          this.D[i][j] = this.D[i][k] + this.D[k][j];
                          this.P[i][j] = this.P[i][k]; /* 路径设置经过下标为 k 的顶点 */
                      }
                  }
              }
          }
      }
      
      /* 最短路径的显示 */
      Graph.prototype.shortestPathShow = function () {
          for(var i =0;i<this.v.length;i++){
              for(var j=0;j<this.v.length;j++){
                  console.group("v"+i+" - v"+j+" 的路径长度为"+this.D[i][j]+",路径为:");
                  console.log(i); /* 打印源点 */
                  var k = this.P[i][j]; /* 获得第一个路径顶点下标 */
                  while(k!=j){
                      console.log(k); /* 打印路径顶点 */
                      k=this.P[k][j];
                  }
                  console.log(j); /* 打印终点 */
                  console.groupEnd();
              }
          }
      }
      /* 测试代码 */
      var v= [0,1,2,3,4,5,6,7,8];
      var g = new Graph(v);
      g.addEdge(0,1,1);g.addEdge(0,2,5);
      g.addEdge(1,2,3);g.addEdge(1,3,7);g.addEdge(1,4,5);
      g.addEdge(2,4,1);g.addEdge(2,5,7);
      g.addEdge(3,4,2);g.addEdge(3,6,3);
      g.addEdge(4,5,3);g.addEdge(4,6,6);g.addEdge(4,7,9);
      g.addEdge(5,7,5);
      g.addEdge(6,7,2);g.addEdge(6,8,7);
      g.addEdge(7,8,4);
      
      g.shortestPath_Floyd();
      console.log(g);
      g.shortestPathShow();

      控制台打印的信息:
      这里写图片描述

  • 0
    点赞
  • 7
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值