1. R包选择。使用R做潜剖面分析会用到tidyLPA和tidyverse(这两个具体谁有什么作用我不清楚)
# 载入包
library(tidyLPA)
library(tidyverse)
2. 载入数据。这里我用的是.csv格式数据,如果你的是spss格式,可以使用其他的包加载,也可以将spss的.sav格式转化为.csv格式。我的数据一共11列,也就是11个变量。2-11是我想聚类的变量,第一列是个体的ID,后面可以用来查找对应个案被聚类的到哪一类
# 载入数据
data <- read.csv('文件名.csv')
3. 筛选出做潜剖面分析的变量。这里我是选择从第2列到第11列
# 变量选择
data_select <-select(data,c(2:11))
4. 进行聚类分析。这里的1:6是指你想要聚成几类,1:6就是聚1至6个类,你也可以直接输入4这样的数字,就代表只聚4次。后面的2是聚类的方式选择(这个我也不太理解,应该是按照自己的数据来选择的),下面的图片是6种可选择的方案
# 进行聚类
cluster <- estimate_profiles(data_select,1:6,2)
Figure 1: