R数据分析:再写潜在类别分析LCA的做法与解释

本文详细介绍潜在类别分析(LCA)的基础概念与应用实践,通过R语言poLCA包实现潜类别分析,包括如何设定潜类别数量、循环语法及2D可视化结果解读。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

应粉丝要求,再给大家写一期潜在类别分析的教程,尽量写的详细一点。

首先,问题导入,啥是潜在类别分析?

Latent Class Analysis (LCA) is a statistical model in which individuals can be classified into mutually exclusive and exhaustive types, or latent classes, based on their pattern of answers on a set of (categorical) measured variables.

潜在类别分析就是依据个体在分类变量上的响应,将个体分为互斥的组,群,潜类别。

在这儿,组,群,潜类别都是一个东西,这儿大家注意,在潜在类别分析中响应变量或者说显变一定是分类变量,这个要和潜在剖面分析LPA区别开。

在做潜类别的时候你首先要设定你要你的数据有几个潜类别,我们的标准是拟合好的情况下尽可能选择最少的潜类别。

这儿值得注意的是,在R语言种poLCA的作者说过这么一段话:

He said, that he wouldn´t rely on statistical criteria to decide which model is the best, but he would look which model has the most meaningful interpretation and has a better answer to the research question.

也就是说最终你考虑到底你的数据有几个潜类别时,一定要考虑结果的可解释性。

今天还是给大家写一个系统的例子。

评论 14
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

公众号Codewar原创作者

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值