说明:本文章中为作者R学习笔记,资料及操作流程均来源网络,侵权删!
本文源代码“使用R做方差分析源代码.R”
1. 方差分析假定:正态性(否则建立广义线性模型),独立性(否则建立混合线性模型,定义G矩阵和R矩阵),齐次性(否则混合线性模型,定义G矩阵和R矩阵)
2. 单因素方差分析(为什么高级心统老师讲“边际均值比较”更常用?)
2.1 安装相关R包,并找出数据(来源“agridat,将数据命名dat)。这里使用devtools下载github上的文件,devtools后面的格式是install_github("Package Name","Author Name"),::的作用可以理解成当有多个包下有同 一名字函数时,可以用::指定包
# install.packages("agridat")
# install.packages("devtools")
# devtools::install_github("kwstat/agridat")#这一步是利用devtools下载github上的数据
library(agridat)
#单因素方差分析-数据
data(lasrosas.corn)
dat <- lasrosas.corn
str(dat)
2.2 方差分析代码格式:“m1 = aov(yield ~ nf, data=dat)”,m1为模型保存的名称,aov为R中的方差分析代码,yield为因变量,~波浪号前后分开Y与X变量,nf为X变量(种类),data=表示数据库用哪一个,dat为数据库名称
m1 = aov(yield ~ nf, data=dat)
summary(m1)
2.3 这里在查看数据库时,前面用到str()函数,它是用来紧凑的显示对象内部结构,也就是对象里面有什么,除此之外还可以用head()函数表示,但这种方式只可以查看数据前6行数据。summary()函数可以获取描述性统计量,也就是显示出方程或者其他分析的结果
3. 单因素区组
代码格式:“m2 = aov(yield ~ block +trt, data=dat”(+分割预测变量)
#单因素随机区组-建模
m2 = aov(yield ~ block +trt, data=dat)
summary(m2)
4. 两因素方差分析(无交互)-用新的数据库
#两因素方差分析(无交互)-数据库
data(lucas.switchback)
dat <-lucas.switchback
str(dat)
#两因素方差分析(无交互)-建模
m3 = aov(yield ~ block +trt +period, data=dat)
summary(m3)
代码格式:“m3 = aov(yield ~ block +trt +period, data=dat)”(这里是将block也就是区组作为一个自变量了?而且这个区组是谁的区组?)
5. 两因素方差分析(有交互)
#两因素方差分析(有交互)-数据库
data(lucas.switchback)
dat <- lucas.switchback
#两因素方差分析(有交互)-建模
m4 = aov(yield ~ block +trt*period, data=dat)
summa