Google Play要求app从2019年8月1日起支持64位CPU

自2019年8月起, GooglePlay强制要求应用支持64位体系,涉及C/C++的native代码需提供多体系so库。通过AndroidStudio或adb命令可检查APK兼容性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

2019年02月15日 10:47:00 weixin_34082695 阅读数:250
从2019年8月1日起,在Google Play上发布app必须支持64位体系。从021年8月1日起,Google Play将停掉尚未支持64位体系的APP。

这样我们自己或第三方依赖库使用到native代码例如C、C++就需要提供armeabi-v7a、arm64-v8a、x86、x86_64等的so库。如果不确定可通过Android Studio中的Build下载Analyze APK来查看lib目录下是否有对应的so库。简单的话,拖拽apk文件到Android Studio中即可。

通过adb命令安装app,也可以查看apk是否支持相应的CPU体系

adb install --abi arm64-v8a 12.15_20190215_315_release.apk

### 解决 PP-OCRv4 出现的错误 当遇到 `WARNING: The pretrained params backbone.blocks2.0.dw_conv.lab.scale not in model` 这样的警告时,这通常意味着预训练模型中的某些参数未能匹配到当前配置下的模型结构中[^2]。 对于此问题的一个有效解决方案是采用特定配置文件来适配预训练权重。具体操作方法如下: 通过指定配置文件 `ch_PP-OCRv4_det_student.yml` 并利用已有的最佳精度预训练模型 (`best_accuracy`) 来启动训练过程可以绕过上述不兼容的问题。执行命令如下所示: ```bash python3 tools/train.py -c configs/det/ch_PP-OCRv4/ch_PP-OCRv4_det_student.yml ``` 该方案不仅解决了参数缺失带来的警告,还能够继续基于高质量的预训练成果进行微调,从而提升最终检测效果。 关于蒸馏的概念,在机器学习领域内指的是将大型复杂网络(teacher 模型)的知识迁移到小型简单网络(student 模型)。这里 student 和 teacher 的关系是指两个不同规模或架构的神经网络之间的指导与被指导的关系;其中 teacher 已经经过充分训练并具有良好的性能,而 student 则试图模仿前者的行为模式以达到相似的效果但保持更高效的计算特性。 至于提到的 `Traceback` 错误信息部分,由于未提供具体的跟踪堆栈详情,难以给出针对性建议。不过一般而言,这报错往往涉及代码逻辑错误或是环境配置不当等问题。为了更好地帮助定位和解决问题,推荐记录完整的异常日志,并仔细检查最近修改过的代码片段以及确认依赖库版本的一致性。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值