题目大意
给出n个数的序列A,相邻两个数之间随机出现加号、减号和乘号。m次操作,每次修改一个数,然后输出所有可能的序列答案之和模1,000,000,007的值。
n,q≤100000
分析
考虑一段连续乘在一起的数(包括只有一个数的情况),如果它不包括第一个数,即前面可能会有加号、减号,那么它对答案的贡献为0(加减抵消掉了)。所以有用的只有从第一个数开始连续乘起来的一段。
枚举第一个加或减号出现在第i个数之后,然后它对答案的贡献就是左边的数累乘,再乘3的幂乘2(i=n不用乘)。然后修改一个数会让一个后缀区间的数都乘上一个数。
用线段树维护区间和即可。
时间复杂度O(nlogn)
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
const int N=100005,mo=1e9+7,M=262200;
typedef long long LL;
int n,q,s[N],p[N],Inv[N],a[N],t[M],tag[M];
char c;
int read()
{
int x=0,sig=1;
for (c=getchar();c<'0' || c>'9';c=getchar()) if (c=='-') sig=-1;
for (;c>='0' && c<='9';c=getchar()) x=x*10+c-48;
return x*sig;
}
void Init(int l,int r,int x)
{
tag[x]=1;
if (l==r)
{
t[x]=s[l]; return;
}
int mid=l+r>>1;
Init(l,mid,x<<1); Init(mid+1,r,x<<1|1);
t[x]=(t[x<<1]+t[x<<1|1])%mo;
}
void change(int l,int r,int a,int b,int v,int x)
{
if (l==a && r==b)
{
t[x]=(LL)t[x]*v%mo;
tag[x]=(LL)tag[x]*v%mo;
return;
}
if (tag[x]!=1)
{
t[x<<1]=(LL)t[x<<1]*tag[x]%mo;
tag[x<<1]=(LL)tag[x<<1]*tag[x]%mo;
t[x<<1|1]=(LL)t[x<<1|1]*tag[x]%mo;
tag[x<<1|1]=(LL)tag[x<<1|1]*tag[x]%mo;
tag[x]=1;
}
int mid=l+r>>1;
if (b<=mid) change(l,mid,a,b,v,x<<1);
else if (a>mid) change(mid+1,r,a,b,v,x<<1|1);
else
{
change(l,mid,a,mid,v,x<<1); change(mid+1,r,mid+1,b,v,x<<1|1);
}
t[x]=(t[x<<1]+t[x<<1|1])%mo;
}
int main()
{
n=read(); q=read();
p[0]=1;
for (int i=1;i<=n;i++)
{
a[i]=read(); p[i]=(LL)p[i-1]*a[i]%mo;
}
s[n]=p[n];
for (int i=n-1,j=1;i;i--,j=(LL)j*3%mo)
{
s[i]=(LL)j*2*p[i]%mo;
}
Init(1,n,1);
Inv[1]=1;
for (int i=2;i<N;i++) Inv[i]=(LL)Inv[mo%i]*(mo-mo/i)%mo;
while (q--)
{
int x=read(),v=read();
change(1,n,x,n,(LL)v*Inv[a[x]]%mo,1);
a[x]=v;
printf("%d\n",t[1]);
}
return 0;
}
本文介绍了一种解决动态更新表达式求和问题的方法。针对给定的数列及操作,通过线段树维护区间的乘积状态,实现快速更新与求和。此算法采用O(nlogn)的时间复杂度,适用于大规模数据处理。
353

被折叠的 条评论
为什么被折叠?



