来自:算法基础课
文章目录
第四讲 数学知识
4.1 质数
试除法判定质数 —— 模板题 AcWing 866. 试除法判定质数
bool is_prime(int x)
{
if (x < 2) return false;
for (int i = 2; i <= x / i; i ++ )
if (x % i == 0)
return false;
return true;
}
试除法分解质因数 —— 模板题 AcWing 867. 分解质因数
void divide(int x)
{
for (int i = 2; i <= x / i; i ++ )
if (x % i == 0)
{
int s = 0;
while (x % i == 0) x /= i, s ++ ;
cout << i << ' ' << s << endl;
}
if (x > 1) cout << x << ' ' << 1 << endl;
cout << endl;
}
朴素筛法求素数 —— 模板题 AcWing 868. 筛质数
int primes[N], cnt; // primes[]存储所有素数
bool st[N]; // st[x]存储x是否被筛掉
void get_primes(int n)
{
for (int i = 2; i <= n; i ++ )
{
if (st[i]) continue;
primes[cnt ++ ] = i;
for (int j = i + i; j <= n; j += i)
st[j] = true;
}
}
线性筛法求素数 —— 模板题 AcWing 868. 筛质数
int primes[N], cnt; // primes[]存储所有素数
bool st[N]; // st[x]存储x是否被筛掉
void get_primes(int n)
{
for (int i = 2; i <= n; i ++ )
{
if (!st[i]) primes[cnt ++ ] = i;
for (int j = 0; primes[j] <= n / i; j ++ )
{
st[primes[j] * i] = true;
if (i % primes[j] == 0) break;
}
}
}
4.1.1 866. 试除法判定质数
给定 n 个正整数 ai,判定每个数是否是质数。
输入格式
第一行包含整数 n。
接下来 n 行,每行包含一个正整数 ai。
输出格式
共 n 行,其中第 i 行输出第 i 个正整数 ai 是否为质数,是则输出 Yes,否则输出 No。
数据范围
1≤n≤100,
1≤ai≤231−1
输入样例:
2
2
6
输出样例:
Yes
No
#include<bits/stdc++.h>
using namespace std;
const int N=110;
int n;
int main()
{
cin>>n;
while(n--)
{
int x;
cin>>x;
bool flag=true;
for(int i=2;i<=x/i;i++)
{
if(x%i==0)
{
flag=false;
break;
}
}
if(flag&&x!=1) cout<<"Yes"<<endl;
else cout<<"No"<<endl;
}
return 0;
}
4.1.2 867. 分解质因数
给定 n 个正整数 ai,将每个数分解质因数,并按照质因数从小到大的顺序输出每个质因数的底数和指数。
输入格式
第一行包含整数 n。
接下来 n 行,每行包含一个正整数 ai。
输出格式
对于每个正整数 ai,按照从小到大的顺序输出其分解质因数后,每个质因数的底数和指数,每个底数和指数占一行。
每个正整数的质因数全部输出完毕后,输出一个空行。
数据范围
1≤n≤100,
1≤ai≤2×109
输入样例:
2
6
8
输出样例:
2 1
3 1
2 3
#include<bits/stdc++.h>
using namespace std;
int n=110;
void getP(int x)
{
for(int i=2;i<=x/i;i++)
{
if(x%i==0)
{
int s=0;
while(x%i==0)
{
s++;
x/=i;
}
cout<<i<<" "<<s<<endl;
}
}
if(x>1) cout<<x<<" "<<1<<endl;
cout<<endl;
}
int main()
{
cin>>n;
while(n--)
{
int x;
cin>>x;
getP(x);
}
return 0;
}
4.1.3 868. 筛质数
给定一个正整数 n,请你求出 1∼n 中质数的个数。
输入格式
共一行,包含整数 n。
输出格式
共一行,包含一个整数,表示 1∼n 中质数的个数。
数据范围
1≤n≤106
输入样例:
8
输出样例:
4
#include<bits/stdc++.h>
using namespace std;
const int N=1000010;
int primes[N],cnt;
bool st[N];
void get_primes(int n)
{
for(int i=2;i<=n;i++)
{
if(!st[i]) primes[cnt++]=i;
for(int j=0;primes[j]<=n/i;j++)
{
st[primes[j]*i]=true;
if(i%primes[j]==0) break;
}
}
}
int main()
{
int n;
cin>>n;
get_primes(n);
cout<<cnt;
return 0;
}
4.2 约数
试除法求所有约数 —— 模板题 AcWing 869. 试除法求约数
vector<int> get_divisors(int x)
{
vector<int> res;
for (int i = 1; i <= x / i; i ++ )
if (x % i == 0)
{
res.push_back(i);
if (i != x / i) res.push_back(x / i);
}
sort(res.begin(), res.end());
return res;
}
约数个数和约数之和 —— 模板题 AcWing 870. 约数个数, AcWing 871. 约数之和
如果 N = p1^c1 * p2^c2 * … *pk^ck
约数个数: (c1 + 1) * (c2 + 1) * … * (ck + 1)
约数之和: (p1^0 + p1^1 + … + p1^c1) * … * (pk^0 + pk^1 + … + pk^ck)
欧几里得算法 —— 模板题 AcWing 872. 最大公约数
int gcd(int a, int b)
{
return b ? gcd(b, a % b) : a;
}
4.2.1 869. 试除法求约数
给定 n 个正整数 ai,对于每个整数 ai,请你按照从小到大的顺序输出它的所有约数。
输入格式
第一行包含整数 n。
接下来 n 行,每行包含一个整数 ai。
输出格式
输出共 n 行,其中第 i 行输出第 i 个整数 ai 的所有约数。
数据范围
1≤n≤100,
2≤ai≤2×109
输入样例:
2
6
8
输出样例:
1 2 3 6
1 2 4 8
#include<bits/stdc++.h>
using namespace std;
int main()
{
int n;
cin>>n;
while(n--)
{
int x;
cin>>x;
set<int> st;
for(int i=1;i<=x/i;i++)
{
if(x%i==0)
{
st.insert(i);
st.insert(x/i);
}
}
for(set<int>::iterator it=st.begin();it!=st.end();it++)
{
cout<<*it<<" ";
}
cout<<endl;
}
return 0;
}
4.2.2 870. 约数个数
给定 n 个正整数 ai,请你输出这些数的乘积的约数个数,答案对 109+7 取模。
输入格式
第一行包含整数 n。
接下来 n 行,每行包含一个整数 ai。
输出格式
输出一个整数,表示所给正整数的乘积的约数个数,答案需对 109+7 取模。
数据范围
1≤n≤100,
1≤ai≤2×109
输入样例:
3
2
6
8
输出样例:
12
#include<bits/stdc++.h>
using namespace std;
const int mod=1e9+7;
typedef long long LL;
int main()
{
int n;
cin>>n;
map<int,int> primes;
while(n--)
{
int x;
cin>>x;
for(int i=2;i<=x/i;i++)
{
while(x%i==0)
{
x/=i;
primes[i]++;
}
}
if(x>1) primes[x]++;
}
LL res=1;
for(map<int,int>::iterator it=primes.begin();it!=primes.end();it++)
{
res=res*(it->second+1)%mod;
}
cout<<res%mod;
return 0;
}
4.2.3 871. 约数之和
给定 n 个正整数 ai,请你输出这些数的乘积的约数之和,答案对 109+7 取模。
输入格式
第一行包含整数 n。
接下来 n 行,每行包含一个整数 ai。
输出格式
输出一个整数,表示所给正整数的乘积的约数之和,答案需对 109+7 取模。
数据范围
1≤n≤100,
1≤ai≤2×109
输入样例:
3
2
6
8
输出样例:
252
#include<bits/stdc++.h>
using namespace std;
const int mod=1e9+7;
typedef long long LL;
int main()
{
int n;
cin>>n;
map<int,int> primes;
while(n--)
{
int x;
cin>>x;
for(int i=2;i<=x/i;i++)
{
while(x%i==0)
{
primes[i]++;
x/=i;
}
}
if(x>1) primes[x]++;
}
LL res=1;
for(map<int,int>::iterator it=primes.begin();it!=primes.end();it++)
{
LL p=it->first,a=it->second;
LL t=1;
while(a--) t=(t*p+1)%mod;
res=res*t%mod;
}
cout<<res;
return 0;
}
4.2.4 872. 最大公约数
给定 n 对正整数 ai,bi,请你求出每对数的最大公约数。
输入格式
第一行包含整数 n。
接下来 n 行,每行包含一个整数对 ai,bi。
输出格式
输出共 n 行,每行输出一个整数对的最大公约数。
数据范围
1≤n≤105,
1≤ai,bi≤2×109
输入样例:
2
3 6
4 6
输出样例:
3
2
#include<bits/stdc++.h>
using namespace std;
int gcd(int a,int b)
{
return b ? gcd(b,a%b) : a;
}
int main()
{
int n;
cin>>n;
while(n--)
{
int a,b;
cin>>a>>b;
cout<<gcd(a,b)<<endl;
}
return 0;
}
4.3 欧拉函数
求欧拉函数 —— 模板题 AcWing 873. 欧拉函数
int phi(int x)
{
int res = x;
for (int i = 2; i <= x / i; i ++ )
if (x % i == 0)
{
res = res / i * (i - 1);
while (x % i == 0) x /= i;
}
if (x > 1) res = res / x * (x - 1);
return res;
}
筛法求欧拉函数 —— 模板题 AcWing 874. 筛法求欧拉函数
int primes[N], cnt; // primes[]存储所有素数
int euler[N]; // 存储每个数的欧拉函数
bool st[N]; // st[x]存储x是否被筛掉
void get_eulers(int n)
{
euler[1] = 1;
for (int i = 2; i <= n; i ++ )
{
if (!st[i])
{
primes[cnt ++ ] = i;
euler[i] = i - 1;
}
for (int j = 0; primes[j] <= n / i; j ++ )
{
int t = primes[j] * i;
st[t] = true;
if (i % primes[j] == 0)
{
euler[t] = euler[i] * primes[j];
break;
}
euler[t] = euler[i] * (primes[j] - 1);
}
}
}
4.3.1 873. 欧拉函数
给定 n 个正整数 ai,请你求出每个数的欧拉函数。
欧拉函数的定义
1∼N 中与 N 互质的数的个数被称为欧拉函数,记为 ϕ(N)。
若在算数基本定理中,N=pa11pa22…pamm,则:
ϕ(N) = N×p1−1p1×p2−1p2×…×pm−1pm
输入格式
第一行包含整数 n。
接下来 n 行,每行包含一个正整数 ai。
输出格式
输出共 n 行,每行输出一个正整数 ai 的欧拉函数。
数据范围
1≤n≤100,
1≤ai≤2×109
输入样例:
3
3
6
8
输出样例:
2
2
4
#include<bits/stdc++.h>
using namespace std;
int main()
{
int n;
cin>>n;
while(n--)
{
int x;
cin>>x;
int res=x;
for(int i=2;i<=x/i;i++)
{
if(x%i==0)
{
res=res/i*(i-1);
while(x%i==0) x/=i;
}
}
if(x>1) res=res/x*(x-1);
cout<<res<<endl;
}
return 0;
}
4.3.2 874. 筛法求欧拉函数
给定一个正整数 n,求 1∼n 中每个数的欧拉函数之和。
输入格式
共一行,包含一个整数 n。
输出格式
共一行,包含一个整数,表示 1∼n 中每个数的欧拉函数之和。
数据范围
1≤n≤106
输入样例:
6
输出样例:
12
#include<bits/stdc++.h>
using namespace std;
typedef long long LL;
const int N=1000010;
int primes[N],cnt;
int euler[N];
bool st[N];
LL get_eulers(int n)
{
euler[1]=1;
for(int i=2;i<=n;i++)
{
if(!st[i])
{
primes[cnt++]=i;
euler[i]=i-1;
}
for(int j=0;primes[j]<=n/i;j++)
{
int t=primes[j]*i;
st[t]=true;
if(i%primes[j]==0)
{
euler[t]=euler[i]*primes[j];
break;
}
euler[t]=euler[i]*(primes[j]-1);
}
}
LL res=0;
for(int i=1;i<=n;i++) res+=euler[i];
return res;
}
int main()
{
int n;
cin>>n;
cout<<get_eulers(n);
return 0;
}
4.4 快速幂
快速幂 —— 模板题 AcWing 875. 快速幂
求 m^k mod p,时间复杂度 O(logk)。
int qmi(int m, int k, int p)
{
int res = 1 % p, t = m;
while (k)
{
if (k&1) res = res * t % p;
t = t * t % p;
k >>= 1;
}
return res;
}
4.4.1 875. 快速幂
给定 n 组 ai,bi,pi,对于每组数据,求出 abiimodpi 的值。
输入格式
第一行包含整数 n。
接下来 n 行,每行包含三个整数 ai,bi,pi。
输出格式
对于每组数据,输出一个结果,表示 abiimodpi 的值。
每个结果占一行。
数据范围
1≤n≤100000,
1≤ai,bi,pi≤2×109
输入样例:
2
3 2 5
4 3 9
输出样例:
4
1
#include<bits/stdc++.h>
using namespace std;
typedef long long LL;
LL qmi(int a,int k,int p)
{
LL res=1;
while(k)
{
if(k&1) res=(LL)res*a%p;
k>>=1;
a=(LL)a*a%p;
}
return res;
}
int main()
{
int n;
cin>>n;
while(n--)
{
int a,k,p;
cin>>a>>k>>p;
cout<<qmi(a,k,p)<<endl;
}
return 0;
}
4.4.2 876. 快速幂求逆元
给定 n 组 ai,pi,其中 pi 是质数,求 ai 模 pi 的乘法逆元,若逆元不存在则输出 impossible。
注意:请返回在 0∼p−1 之间的逆元。
乘法逆元的定义
若整数 b,m 互质,并且对于任意的整数 a,如果满足 b|a,则存在一个整数 x,使得 a/b≡a×x(modm),则称 x 为 b 的模 m 乘法逆元,记为 b−1(modm)。
b 存在乘法逆元的充要条件是 b 与模数 m 互质。当模数 m 为质数时,bm−2 即为 b 的乘法逆元。
输入格式
第一行包含整数 n。
接下来 n 行,每行包含一个数组 ai,pi,数据保证 pi 是质数。
输出格式
输出共 n 行,每组数据输出一个结果,每个结果占一行。
若 ai 模 pi 的乘法逆元存在,则输出一个整数,表示逆元,否则输出 impossible。
数据范围
1≤n≤105,
1≤ai,pi≤2∗109
输入样例:
3
4 3
8 5
6 3
输出样例:
1
2
Impossible
#include<bits/stdc++.h>
using namespace std;
typedef long long LL;
LL qmi(int a,int k,int p)
{
LL res=1;
while(k)
{
if(k&1) res=(LL)res*a%p;
k>>=1;
a=(LL)a*a%p;
}
return res;
}
int main()
{
int n;
cin>>n;
while(n--)
{
int a,p;
cin>>a>>p;
LL res=qmi(a,p-2,p);
if(a%p) cout<<res<<endl;
else cout<<"impossible"<<endl;
}
return 0;
}
4.5 扩展欧几里得算法
扩展欧几里得算法 —— 模板题 AcWing 877. 扩展欧几里得算法
// 求x, y,使得ax + by = gcd(a, b)
int exgcd(int a, int b, int &x, int &y)
{
if (!b)
{
x = 1; y = 0;
return a;
}
int d = exgcd(b, a % b, y, x);
y -= (a/b) * x;
return d;
}
4.5.1 877. 扩展欧几里得算法
给定 n 对正整数 ai,bi,对于每对数,求出一组 xi,yi,使其满足 ai×xi+bi×yi=gcd(ai,bi)。
输入格式
第一行包含整数 n。
接下来 n 行,每行包含两个整数 ai,bi。
输出格式
输出共 n 行,对于每组 ai,bi,求出一组满足条件的 xi,yi,每组结果占一行。
本题答案不唯一,输出任意满足条件的 xi,yi 均可。
数据范围
1≤n≤105,
1≤ai,bi≤2×109
输入样例:
2
4 6
8 18
输出样例:
-1 1
-2 1
#include<bits/stdc++.h>
using namespace std;
int exgcd(int a,int b,int &x,int &y)
{
if(!b)
{
x=1,y=0;
return a;
}
int d=exgcd(b,a%b,y,x);
y-=a/b*x;
return d;
}
int main()
{
int n;
cin>>n;
while(n--)
{
int a,b,x,y;
cin>>a>>b;
exgcd(a,b,x,y);
cout<<x<<" "<<y<<endl;
}
return 0;
}
4.5.2 878. 线性同余方程
给定 n 组数据 ai,bi,mi,对于每组数求出一个 xi,使其满足 ai×xi≡bi(modmi),如果无解则输出 impossible。
输入格式
第一行包含整数 n。
接下来 n 行,每行包含一组数据 ai,bi,mi。
输出格式
输出共 n 行,每组数据输出一个整数表示一个满足条件的 xi,如果无解则输出 impossible。
每组数据结果占一行,结果可能不唯一,输出任意一个满足条件的结果均可。
输出答案必须在 int 范围之内。
数据范围
1≤n≤105,
1≤ai,bi,mi≤2×109
输入样例:
2
2 3 6
4 3 5
输出样例:
impossible
-3
#include<bits/stdc++.h>
using namespace std;
typedef long long LL;
int exgcd(int a,int b,int &x,int &y)
{
if(!b)
{
x=1,y=0;
return a;
}
int d=exgcd(b,a%b,y,x);
y-=a/b*x;
return d;
}
int main()
{
int n;
cin>>n;
while(n--)
{
int a,b,m,x,y;
cin>>a>>b>>m;
int d=exgcd(a,m,x,y);
if(b%d) cout<<"impossible"<<endl;
else cout<<(LL)x*(b/d)%m<<endl;
}
return 0;
}
4.6 中国剩余定理
4.6.1 204. 表达整数的奇怪方式
给定 2n 个整数 a1,a2,…,an 和 m1,m2,…,mn,求一个最小的非负整数 x,满足 ∀i∈[1,n],x≡mi(mod ai)。
输入格式
第 1 行包含整数 n。
第 2…n+1 行:每 i+1 行包含两个整数 ai 和 mi,数之间用空格隔开。
输出格式
输出最小非负整数 x,如果 x 不存在,则输出 −1。
如果存在 x,则数据保证 x 一定在 64 位整数范围内。
数据范围
1≤ai≤231−1,
0≤mi<ai
1≤n≤25
输入样例:
2
8 7
11 9
输出样例:
31
#include<bits/stdc++.h>
using namespace std;
typedef long long LL;
LL exgcd(LL a,LL b,LL &x,LL &y)
{
if(!b)
{
x=1,y=0;
return a;
}
LL d=exgcd(b,a%b,y,x);
y-=a/b*x;
return d;
}
int main()
{
int n;
cin>>n;
bool flag=true;
LL a1,m1;
cin>>a1>>m1;
for(int i=0;i<n-1;i++)
{
LL a2,m2;
cin>>a2>>m2;
LL k1,k2;
LL d=exgcd(a1,a2,k1,k2);
if((m2-m1)%d)
{
flag=false;
break;
}
k1*=(m2-m1)/d;
LL t=a2/d;
k1=(k1%t+t)%t;
m1=a1*k1+m1;
a1=abs(a1/d*a2);
}
if(flag) cout<<(m1%a1+a1)%a1<<endl;
else cout<<-1<<endl;
return 0;
}
4.7 高斯消元
高斯消元 —— 模板题 AcWing 883. 高斯消元解线性方程组
// a[N][N]是增广矩阵
int gauss()
{
int c, r;
for (c = 0, r = 0; c < n; c ++ )
{
int t = r;
for (int i = r; i < n; i ++ ) // 找到绝对值最大的行
if (fabs(a[i][c]) > fabs(a[t][c]))
t = i;
if (fabs(a[t][c]) < eps) continue;
for (int i = c; i <= n; i ++ ) swap(a[t][i], a[r][i]); // 将绝对值最大的行换到最顶端
for (int i = n; i >= c; i -- ) a[r][i] /= a[r][c]; // 将当前行的首位变成1
for (int i = r + 1; i < n; i ++ ) // 用当前行将下面所有的列消成0
if (fabs(a[i][c]) > eps)
for (int j = n; j >= c; j -- )
a[i][j] -= a[r][j] * a[i][c];
r ++ ;
}
if (r < n)
{
for (int i = r; i < n; i ++ )
if (fabs(a[i][n]) > eps)
return 2; // 无解
return 1; // 有无穷多组解
}
for (int i = n - 1; i >= 0; i -- )
for (int j = i + 1; j < n; j ++ )
a[i][n] -= a[i][j] * a[j][n];
return 0; // 有唯一解
}
4.7.1 883. 高斯消元解线性方程组
输入一个包含 n 个方程 n 个未知数的线性方程组。
方程组中的系数为实数。
求解这个方程组。
下图为一个包含 m 个方程 n 个未知数的线性方程组示例:
输入格式
第一行包含整数 n。
接下来 n 行,每行包含 n+1 个实数,表示一个方程的 n 个系数以及等号右侧的常数。
输出格式
如果给定线性方程组存在唯一解,则输出共 n 行,其中第 i 行输出第 i 个未知数的解,结果保留两位小数。
如果给定线性方程组存在无数解,则输出 Infinite group solutions。
如果给定线性方程组无解,则输出 No solution。
数据范围
1≤n≤100,
所有输入系数以及常数均保留两位小数,绝对值均不超过 100。
输入样例:
3
1.00 2.00 -1.00 -6.00
2.00 1.00 -3.00 -9.00
-1.00 -1.00 2.00 7.00
输出样例:
1.00
-2.00
3.00
#include<bits/stdc++.h>
using namespace std;
const int N=110;
const double eps=1e-6;
int n;
double a[N][N];
int gauss()
{
int c,r;
for(c=0,r=0;c<n;c++)
{
int t=r;
for(int i=r;i<n;i++)
if(fabs(a[i][c])>fabs(a[t][c]))
t=i;
if(fabs(a[t][c])<eps) continue;
for(int i=c;i<n+1;i++) swap(a[t][i],a[r][i]);
for(int i=n;i>=c;i--) a[r][i]/=a[r][c];
for(int i=r+1;i<n;i++)
if(fabs(a[i][c])>eps)
for(int j=n;j>=c;j--)
a[i][j]-=a[r][j]*a[i][c];
r++;
}
if(r<n)
{
for(int i=r;i<n;i++)
if(fabs(a[i][n])>eps)
return 2;
return 1;
}
for(int i=n-1;i>=0;i--)
for(int j=i+1;j<n;j++)
a[i][n]-=a[j][n]*a[i][j];
return 0;
}
int main()
{
cin>>n;
for(int i=0;i<n;i++)
{
for(int j=0;j<n+1;j++)
cin>>a[i][j];
}
int t=gauss();
if(t==0)
{
for(int i=0;i<n;i++)
printf("%.2f\n",a[i][n]);
}
else if(t==1)
cout<<"Infinite group solutions"<<endl;
else cout<<"No solution"<<endl;
return 0;
}
4.7.2 884. 高斯消元解异或线性方程组
输入一个包含 n 个方程 n 个未知数的异或线性方程组。
方程组中的系数和常数为 0 或 1,每个未知数的取值也为 0 或 1。
求解这个方程组。
异或线性方程组示例如下:
M[1][1]x[1] ^ M[1][2]x[2] ^ … ^ M[1][n]x[n] = B[1]
M[2][1]x[1] ^ M[2][2]x[2] ^ … ^ M[2][n]x[n] = B[2]
…
M[n][1]x[1] ^ M[n][2]x[2] ^ … ^ M[n][n]x[n] = B[n]
其中 ^ 表示异或(XOR),M[i][j] 表示第 i 个式子中 x[j] 的系数,B[i] 是第 i 个方程右端的常数,取值均为 0 或 1。
输入格式
第一行包含整数 n。
接下来 n 行,每行包含 n+1 个整数 0 或 1,表示一个方程的 n 个系数以及等号右侧的常数。
输出格式
如果给定线性方程组存在唯一解,则输出共 n 行,其中第 i 行输出第 i 个未知数的解。
如果给定线性方程组存在多组解,则输出 Multiple sets of solutions。
如果给定线性方程组无解,则输出 No solution。
数据范围
1≤n≤100
输入样例:
3
1 1 0 1
0 1 1 0
1 0 0 1
输出样例:
1
0
0
#include<bits/stdc++.h>
using namespace std;
const int N=110;
int n;
int a[N][N];
int gauss()
{
int r,c;
for(c=0,r=0;c<n;c++)
{
int t=r;
for(int i=r;i<n;i++)
if(a[i][c])
{
t=i;
break;
}
if(!a[t][c]) continue;
for(int i=c;i<n+1;i++) swap(a[t][i],a[r][i]);
for(int i=r+1;i<n;i++)
if(a[i][c])
for(int j=c;j<=n;j++)
a[i][j]^=a[r][j];
r++;
}
if(r<n)
{
for(int i=r;i<n;i++)
if(a[i][n])
return 2;
return 1;
}
for(int i=n-1;i>=0;i--)
for(int j=i+1;j<n;j++)
a[i][n]^=a[j][n]&a[i][j];
return 0;
}
int main()
{
cin>>n;
for(int i=0;i<n;i++)
{
for(int j=0;j<n+1;j++)
cin>>a[i][j];
}
int t=gauss();
if(t==0)
{
for(int i=0;i<n;i++)
cout<<a[i][n]<<endl;
}
else if(t==1)
cout<<"Multiple sets of solutions"<<endl;
else cout<<"No solution"<<endl;
return 0;
}
4.8 求组合数
递归法求组合数 —— 模板题 AcWing 885. 求组合数 I
// c[a][b] 表示从a个苹果中选b个的方案数
for (int i = 0; i < N; i ++ )
for (int j = 0; j <= i; j ++ )
if (!j) c[i][j] = 1;
else c[i][j] = (c[i - 1][j] + c[i - 1][j - 1]) % mod;
通过预处理逆元的方式求组合数 —— 模板题 AcWing 886. 求组合数 II
首先预处理出所有阶乘取模的余数fact[N],以及所有阶乘取模的逆元infact[N]
如果取模的数是质数,可以用费马小定理求逆元
int qmi(int a, int k, int p) // 快速幂模板
{
int res = 1;
while (k)
{
if (k & 1) res = (LL)res * a % p;
a = (LL)a * a % p;
k >>= 1;
}
return res;
}
// 预处理阶乘的余数和阶乘逆元的余数
fact[0] = infact[0] = 1;
for (int i = 1; i < N; i ++ )
{
fact[i] = (LL)fact[i - 1] * i % mod;
infact[i] = (LL)infact[i - 1] * qmi(i, mod - 2, mod) % mod;
}
Lucas定理 —— 模板题 AcWing 887. 求组合数 III
若p是质数,则对于任意整数 1 <= m <= n,有:
C(n, m) = C(n % p, m % p) * C(n / p, m / p) (mod p)
int qmi(int a, int k, int p) // 快速幂模板
{
int res = 1 % p;
while (k)
{
if (k & 1) res = (LL)res * a % p;
a = (LL)a * a % p;
k >>= 1;
}
return res;
}
int C(int a, int b, int p) // 通过定理求组合数C(a, b)
{
if (a < b) return 0;
LL x = 1, y = 1; // x是分子,y是分母
for (int i = a, j = 1; j <= b; i --, j ++ )
{
x = (LL)x * i % p;
y = (LL) y * j % p;
}
return x * (LL)qmi(y, p - 2, p) % p;
}
int lucas(LL a, LL b, int p)
{
if (a < p && b < p) return C(a, b, p);
return (LL)C(a % p, b % p, p) * lucas(a / p, b / p, p) % p;
}
分解质因数法求组合数 —— 模板题 AcWing 888. 求组合数 IV
当我们需要求出组合数的真实值,而非对某个数的余数时,分解质因数的方式比较好用:
1. 筛法求出范围内的所有质数
2. 通过 C(a, b) = a! / b! / (a - b)! 这个公式求出每个质因子的次数。 n! 中p的次数是 n / p + n / p^2 + n / p^3 + …
3. 用高精度乘法将所有质因子相乘
int primes[N], cnt; // 存储所有质数
int sum[N]; // 存储每个质数的次数
bool st[N]; // 存储每个数是否已被筛掉
void get_primes(int n) // 线性筛法求素数
{
for (int i = 2; i <= n; i ++ )
{
if (!st[i]) primes[cnt ++ ] = i;
for (int j = 0; primes[j] <= n / i; j ++ )
{
st[primes[j] * i] = true;
if (i % primes[j] == 0) break;
}
}
}
int get(int n, int p) // 求n!中的次数
{
int res = 0;
while (n)
{
res += n / p;
n /= p;
}
return res;
}
vector<int> mul(vector<int> a, int b) // 高精度乘低精度模板
{
vector<int> c;
int t = 0;
for (int i = 0; i < a.size(); i ++ )
{
t += a[i] * b;
c.push_back(t % 10);
t /= 10;
}
while (t)
{
c.push_back(t % 10);
t /= 10;
}
return c;
}
get_primes(a); // 预处理范围内的所有质数
for (int i = 0; i < cnt; i ++ ) // 求每个质因数的次数
{
int p = primes[i];
sum[i] = get(a, p) - get(b, p) - get(a - b, p);
}
vector<int> res;
res.push_back(1);
for (int i = 0; i < cnt; i ++ ) // 用高精度乘法将所有质因子相乘
for (int j = 0; j < sum[i]; j ++ )
res = mul(res, primes[i]);
卡特兰数 —— 模板题 AcWing 889. 满足条件的01序列
给定n个0和n个1,它们按照某种顺序排成长度为2n的序列,满足任意前缀中0的个数都不少于1的个数的序列的数量为: Cat(n) = C(2n, n) / (n + 1)
4.8.1 885. 求组合数 I
给定 n 组询问,每组询问给定两个整数 a,b,请你输出 Cbamod(109+7) 的值。
输入格式
第一行包含整数 n。
接下来 n 行,每行包含一组 a 和 b。
输出格式
共 n 行,每行输出一个询问的解。
数据范围
1≤n≤10000,
1≤b≤a≤2000
输入样例:
3
3 1
5 3
2 2
输出样例:
3
10
1
#include<bits/stdc++.h>
using namespace std;
const int N=2010,mod=1e9+7;
int c[N][N];
void init()
{
for(int i=0;i<N;i++)
for(int j=0;j<=i;j++)
if(!j) c[i][j]=1;
else c[i][j]=(c[i-1][j]+c[i-1][j-1])%mod;
}
int main()
{
init();
int n;
cin>>n;
while(n--)
{
int a,b;
cin>>a>>b;
cout<<c[a][b]<<endl;
}
return 0;
}
4.8.2 886. 求组合数 II
给定 n 组询问,每组询问给定两个整数 a,b,请你输出 Cbamod(109+7) 的值。
输入格式
第一行包含整数 n。
接下来 n 行,每行包含一组 a 和 b。
输出格式
共 n 行,每行输出一个询问的解。
数据范围
1≤n≤10000,
1≤b≤a≤105
输入样例:
3
3 1
5 3
2 2
输出样例:
3
10
1
#include<bits/stdc++.h>
using namespace std;
typedef long long LL;
const int N=100010,mod=1e9+7;
int fact[N],infact[N];
int qmi(int a,int k,int p)
{
int res=1;
while(k)
{
if(k&1) res=(LL)res*a%p;
a=(LL)a*a%p;
k>>=1;
}
return res;
}
int main()
{
fact[0]=infact[0]=1;
for(int i=1;i<N;i++)
{
fact[i]=(LL)fact[i-1]*i%mod;
infact[i]=(LL)infact[i-1]*qmi(i,mod-2,mod)%mod;
}
int n;
cin>>n;
while(n--)
{
int a,b;
cin>>a>>b;
cout<<(LL)fact[a]*infact[b]%mod*infact[a-b]%mod<<endl;
}
return 0;
}
4.8.3 887. 求组合数 III
给定 n 组询问,每组询问给定三个整数 a,b,p,其中 p 是质数,请你输出 Cbamodp 的值。
输入格式
第一行包含整数 n。
接下来 n 行,每行包含一组 a,b,p。
输出格式
共 n 行,每行输出一个询问的解。
数据范围
1≤n≤20,
1≤b≤a≤1018,
1≤p≤105,
输入样例:
3
5 3 7
3 1 5
6 4 13
输出样例:
3
3
2
#include<bits/stdc++.h>
using namespace std;
typedef long long LL;
int p;
int qmi(LL a,int k)
{
int res=1;
while(k)
{
if(k&1) res=(LL)res*a%p;
a=(LL)a*a%p;
k>>=1;
}
return res;
}
int C(LL a,LL b)
{
int res=1;
for(int i=1,j=a;i<=b;i++,j--)
{
res=(LL)res*j%p;
res=(LL)res*qmi(i,p-2)%p;
}
return res;
}
int lucas(LL a,LL b)
{
if(a<p&&b<p) return C(a,b);
return (LL)C(a%p,b%p)*lucas(a/p,b/p)%p;
}
int main()
{
int n;
cin>>n;
while(n--)
{
LL a,b;
cin>>a>>b>>p;
cout<<lucas(a,b)<<endl;
}
return 0;
}
4.8.4 888. 求组合数 IV
输入 a,b,求 Cba 的值。
注意结果可能很大,需要使用高精度计算。
输入格式
共一行,包含两个整数 a 和 b。
输出格式
共一行,输出 Cba 的值。
数据范围
1≤b≤a≤5000
输入样例:
5 3
输出样例:
10
#include<bits/stdc++.h>
using namespace std;
const int N=5010;
int primes[N],cnt;
int sum[N];
bool st[N];
void get_primes(int n)
{
for(int i=2;i<=n;i++)
{
if(!st[i]) primes[cnt++]=i;
for(int j=0;primes[j]<=n/i;j++)
{
st[primes[j]*i]=true;
if(i%primes[j]==0) break;
}
}
}
int get(int n,int p)
{
int res=0;
while(n)
{
res+=n/p;
n/=p;
}
return res;
}
vector<int> mul(vector<int> a,int b)
{
vector<int> c;
int t=0;
for(int i=0;i<a.size();i++)
{
t+=a[i]*b;
c.push_back(t%10);
t/=10;
}
while(t)
{
c.push_back(t%10);
t/=10;
}
return c;
}
int main()
{
int a,b;
cin>>a>>b;
get_primes(a);
for(int i=0;i<cnt;i++)
{
int p=primes[i];
sum[i]=get(a,p)-get(b,p)-get(a-b,p);
}
vector<int> res;
res.push_back(1);
for(int i=0;i<cnt;i++)
for(int j=0;j<sum[i];j++)
res=mul(res,primes[i]);
for(int i=res.size()-1;i>=0;i--) cout<<res[i];
return 0;
}
4.8.5 889. 满足条件的01序列
给定 n 个 0 和 n 个 1,它们将按照某种顺序排成长度为 2n 的序列,求它们能排列成的所有序列中,能够满足任意前缀序列中 0 的个数都不少于 1 的个数的序列有多少个。
输出的答案对 109+7 取模。
输入格式
共一行,包含整数 n。
输出格式
共一行,包含一个整数,表示答案。
数据范围
1≤n≤105
输入样例:
3
输出样例:
5
#include<bits/stdc++.h>
using namespace std;
typedef long long LL;
const int mod=1e9+7;
int qmi(int a,int k,int p)
{
int res=1;
while(k)
{
if(k&1) res=(LL)res*a%p;
a=(LL)a*a%p;
k>>=1;
}
return res;
}
int main()
{
int n;
cin>>n;
int a=2*n,b=n;
int res=1;
for(int i=a;i>a-b;i--) res=(LL)res*i%mod;
for(int i=1;i<=b;i++) res=(LL)res*qmi(i,mod-2,mod)%mod;
res=(LL)res*qmi(n+1,mod-2,mod)%mod;
cout<<res<<endl;
return 0;
}
4.9 容斥原理
4.9.1 890. 能被整除的数
给定一个整数 n 和 m 个不同的质数 p1,p2,…,pm。
请你求出 1∼n 中能被 p1,p2,…,pm 中的至少一个数整除的整数有多少个。
输入格式
第一行包含整数 n 和 m。
第二行包含 m 个质数。
输出格式
输出一个整数,表示满足条件的整数的个数。
数据范围
1≤m≤16,
1≤n,pi≤109
输入样例:
10 2
2 3
输出样例:
7
#include<bits/stdc++.h>
using namespace std;
const int N=20;
typedef long long LL;
int n,m;
int p[N];
int main()
{
cin>>n>>m;
for(int i=0;i<m;i++) cin>>p[i];
int res=0;
for(int i=1;i<1<<m;i++)
{
int t=1,cnt=0;
for(int j=0;j<m;j++)
{
if(i>>j&1)
{
cnt++;
if((LL)t*p[j]>n)
{
t=-1;
break;
}
t*=p[j];
}
}
if(t!=-1)
{
if(cnt%2) res+=n/t;
else res-=n/t;
}
}
cout<<res<<endl;
return 0;
}
4.10博弈论
NIM游戏 —— 模板题 AcWing 891. Nim游戏
给定N堆物品,第i堆物品有Ai个。两名玩家轮流行动,每次可以任选一堆,取走任意多个物品,可把一堆取光,但不能不取。取走最后一件物品者获胜。两人都采取最优策略,问先手是否必胜。
我们把这种游戏称为NIM博弈。把游戏过程中面临的状态称为局面。整局游戏第一个行动的称为先手,第二个行动的称为后手。若在某一局面下无论采取何种行动,都会输掉游戏,则称该局面必败。
所谓采取最优策略是指,若在某一局面下存在某种行动,使得行动后对面面临必败局面,则优先采取该行动。同时,这样的局面被称为必胜。我们讨论的博弈问题一般都只考虑理想情况,即两人均无失误,都采取最优策略行动时游戏的结果。
NIM博弈不存在平局,只有先手必胜和先手必败两种情况。
定理: NIM博弈先手必胜,当且仅当 A1 ^ A2 ^ … ^ An != 0
公平组合游戏ICG
若一个游戏满足:
由两名玩家交替行动;
在游戏进程的任意时刻,可以执行的合法行动与轮到哪名玩家无关;
不能行动的玩家判负;
则称该游戏为一个公平组合游戏。
NIM博弈属于公平组合游戏,但城建的棋类游戏,比如围棋,就不是公平组合游戏。因为围棋交战双方分别只能落黑子和白子,胜负判定也比较复杂,不满足条件2和条件3。
有向图游戏
给定一个有向无环图,图中有一个唯一的起点,在起点上放有一枚棋子。两名玩家交替地把这枚棋子沿有向边进行移动,每次可以移动一步,无法移动者判负。该游戏被称为有向图游戏。
任何一个公平组合游戏都可以转化为有向图游戏。具体方法是,把每个局面看成图中的一个节点,并且从每个局面向沿着合法行动能够到达的下一个局面连有向边。
Mex运算
设S表示一个非负整数集合。定义mex(S)为求出不属于集合S的最小非负整数的运算,即:
mex(S) = min{x}, x属于自然数,且x不属于S
SG函数
在有向图游戏中,对于每个节点x,设从x出发共有k条有向边,分别到达节点y1, y2, …, yk,定义SG(x)为x的后继节点y1, y2, …, yk 的SG函数值构成的集合再执行mex(S)运算的结果,即:
SG(x) = mex({SG(y1), SG(y2), …, SG(yk)})
特别地,整个有向图游戏G的SG函数值被定义为有向图游戏起点s的SG函数值,即SG(G) = SG(s)。
有向图游戏的和 —— 模板题 AcWing 893. 集合-Nim游戏
设G1, G2, …, Gm 是m个有向图游戏。定义有向图游戏G,它的行动规则是任选某个有向图游戏Gi,并在Gi上行动一步。G被称为有向图游戏G1, G2, …, Gm的和。
有向图游戏的和的SG函数值等于它包含的各个子游戏SG函数值的异或和,即:
SG(G) = SG(G1) ^ SG(G2) ^ … ^ SG(Gm)
定理
有向图游戏的某个局面必胜,当且仅当该局面对应节点的SG函数值大于0。
有向图游戏的某个局面必败,当且仅当该局面对应节点的SG函数值等于0。
4.10.1 891. Nim游戏
给定 n 堆石子,两位玩家轮流操作,每次操作可以从任意一堆石子中拿走任意数量的石子(可以拿完,但不能不拿),最后无法进行操作的人视为失败。
问如果两人都采用最优策略,先手是否必胜。
输入格式
第一行包含整数 n。
第二行包含 n 个数字,其中第 i 个数字表示第 i 堆石子的数量。
输出格式
如果先手方必胜,则输出 Yes。
否则,输出 No。
数据范围
1≤n≤105,
1≤每堆石子数≤109
输入样例:
2
2 3
输出样例:
Yes
#include<bits/stdc++.h>
using namespace std;
int main()
{
int n;
int res=0;
cin>>n;
while(n--)
{
int x;
cin>>x;
res^=x;
}
if(res) cout<<"Yes"<<endl;
else cout<<"No"<<endl;
return 0;
}
4.10.2 892. 台阶-Nim游戏
现在,有一个 n 级台阶的楼梯,每级台阶上都有若干个石子,其中第 i 级台阶上有 ai 个石子(i≥1)。
两位玩家轮流操作,每次操作可以从任意一级台阶上拿若干个石子放到下一级台阶中(不能不拿)。
已经拿到地面上的石子不能再拿,最后无法进行操作的人视为失败。
问如果两人都采用最优策略,先手是否必胜。
输入格式
第一行包含整数 n。
第二行包含 n 个整数,其中第 i 个整数表示第 i 级台阶上的石子数 ai。
输出格式
如果先手方必胜,则输出 Yes。
否则,输出 No。
数据范围
1≤n≤105,
1≤ai≤109
输入样例:
3
2 1 3
输出样例:
Yes
#include<bits/stdc++.h>
using namespace std;
int main()
{
int n;
int res=0;
cin>>n;
for(int i=1;i<=n;i++)
{
int x;
cin>>x;
if(i%2) res^=x;
}
if(res) cout<<"Yes"<<endl;
else cout<<"No"<<endl;
return 0;
}
4.10.3 893. 集合-Nim游戏
给定 n 堆石子以及一个由 k 个不同正整数构成的数字集合 S。
现在有两位玩家轮流操作,每次操作可以从任意一堆石子中拿取石子,每次拿取的石子数量必须包含于集合 S,最后无法进行操作的人视为失败。
问如果两人都采用最优策略,先手是否必胜。
输入格式
第一行包含整数 k,表示数字集合 S 中数字的个数。
第二行包含 k 个整数,其中第 i 个整数表示数字集合 S 中的第 i 个数 si。
第三行包含整数 n。
第四行包含 n 个整数,其中第 i 个整数表示第 i 堆石子的数量 hi。
输出格式
如果先手方必胜,则输出 Yes。
否则,输出 No。
数据范围
1≤n,k≤100,
1≤si,hi≤10000
输入样例:
2
2 5
3
2 4 7
输出样例:
Yes
#include<bits/stdc++.h>
using namespace std;
const int N=110,M=10010;
int n,m;
int s[N],f[M];
int sg(int x)
{
if(f[x]!=-1) return f[x];
set<int> S;
for(int i=0;i<m;i++)
{
int sum=s[i];
if(x>=sum) S.insert(sg(x-sum));
}
for(int i=0;;i++)
if(!S.count(i))
return f[x]=i;
}
int main()
{
cin>>m;
for(int i=0;i<m;i++) cin>>s[i];
fill(f,f+M,-1);
cin>>n;
int res=0;
for(int i=0;i<n;i++)
{
int x;
cin>>x;
res^=sg(x);
}
if(res) cout<<"Yes"<<endl;
else cout<<"No"<<endl;
return 0;
}
4.10.4 894. 拆分-Nim游戏
给定 n 堆石子,两位玩家轮流操作,每次操作可以取走其中的一堆石子,然后放入两堆规模更小的石子(新堆规模可以为 0,且两个新堆的石子总数可以大于取走的那堆石子数),最后无法进行操作的人视为失败。
问如果两人都采用最优策略,先手是否必胜。
输入格式
第一行包含整数 n。
第二行包含 n 个整数,其中第 i 个整数表示第 i 堆石子的数量 ai。
输出格式
如果先手方必胜,则输出 Yes。
否则,输出 No。
数据范围
1≤n,ai≤100
输入样例:
2
2 3
输出样例:
Yes
#include<bits/stdc++.h>
using namespace std;
const int N=110;
int f[N];
int sg(int x)
{
if(f[x]!=-1) return f[x];
set<int> S;
for(int i=0;i<x;i++)
for(int j=0;j<=i;j++)
S.insert(sg(i)^sg(j));
for(int i=0;;i++)
if(!S.count(i))
return f[x]=i;
}
int main()
{
int n;
cin>>n;
fill(f,f+N,-1);
int res=0;
for(int i=0;i<n;i++)
{
int x;
cin>>x;
res^=sg(x);
}
if(res) puts("Yes");
else puts("No");
return 0;
}