把负数和分数放到指数上
“抽象方法的优越性:从熟悉到不熟悉的扩展与意义赋予”
抽象方法还有一点极大的优越性:它使我们能够将熟悉的概念扩展到不熟悉的情况下,赋予其新的意义。我所说的“赋予意义”的确是恰当的,因为我们所做的正是去赋予意义,而不是去发现某种早就存在的意义。这当中有一个简单的例子,那就是我们如何扩展指数的概念。
“抽象方法的应用:解释指数运算中的特殊情况”
如果n是个正整数,那么
a
n
a^n
an即表示n个a相乘的结果。如
5
3
=
5
∗
5
∗
5
=
125
5^3=5*5*5=125
53=5∗5∗5=125以及
2
5
=
2
∗
2
∗
2
∗
2
∗
2
=
32
2^5=2*2*2*2*2=32
25=2∗2∗2∗2∗2=32。但若以此作为定义,我们就不容易去解释
2
3
/
2
2^{3/2}
23/2这样的表达式,因为你不可能拿出一个半的2,把它们乘在一起。那处理这种问题的抽象方法是什么呢?我们又一次需要抛开寻找内在意义的意识。在本例中即需要忽视
a
n
a^n
an的内在意义,转而考虑关于它的规则。
关于指数运算的两条基本规则是:
E1对任意实数a,
a
1
=
0
a^1=0
a1=0。
E2对任意实数a和任意一对自然数m、n,有
a
m
+
n
=
a
m
+
a
n
a^{m+n}=a^m+a^n
am+n=am+an。
例如,
2
5
=
2
3
∗
2
2
2^5=2^3*2^2
25=23∗22,因为
2
5
2^5
25表示2×2×2x2×2,而
2
3
∗
2
2
2^3*2^2
23∗22表示(2×2X2) × (2X2),由乘法结合律可知两数相同。
“抽象方法的应用:重新解释指数运算中的特殊情况”
从上述两条规则出发,我们可以迅速重新得到已经知道的些事实。比如,根据E2即知
a
2
=
a
1
+
1
a^2=a^{1+1}
a2=a1+1等于
a
1
∗
a
1
a^1*a^1
a1∗a1;再根据E1,此即为a*a,正如我们所了解的。除此以外,我们现在还能够做更多的事情。让我们用x来表示
2
3
/
2
2^{3/2}
23/2。那么
x
∗
x
=
2
3
/
2
∗
2
3
/
2
x*x=2^{3/2}*2^{3/2}
x∗x=23/2∗23/2,由E2得知它就是
2
3
/
2
+
3
/
2
=
2
3
=
8
2^{3/2+3/2}=2^3=8
23/2+3/2=23=8。也就是说
x
2
=
8
x^2=8
x2=8。这并没有完全确定下x,因为8有两个平方根。所以我们通常会采取如下的准则。
E3 如果a>0且b是实数,那么
a
b
a^b
ab为正数。
再应用上E3,我们就发现
2
3
/
2
2^{3/2}
23/2是8的正平方根。
这并不是对
2
3
/
2
2^{3/2}
23/2的“真正值”的发现。但这也不是我们对表达式
2
3
/
2
2^{3/2}
23/2的随意解读一一如果我们希望保持规则E1、E2和E3,这就是唯一的可能性。
“抽象方法的应用:解释指数和对数运算中的特殊情况”
用类似的办法,我们可以对
a
0
a^0
a0给出解释——至少当a不为0时。由E1和E2,我们知道
a
=
a
1
=
a
1
+
0
=
a
1
∗
a
0
=
a
∗
a
0
a=a^1=a^{1+0}=a^1*a^0=a*a^0
a=a1=a1+0=a1∗a0=a∗a0。消去律M5指出,无论a取何值,都有
a
0
=
1
a^0=1
a0=1。对于负指数,如果我们已经知道了
a
b
a^b
ab的值,那么
1
=
a
0
=
a
b
+
(
−
b
)
=
a
b
∗
a
−
b
1=a^0=a^{b+(-b)}=a^b*a^{-b}
1=a0=ab+(−b)=ab∗a−b,由此推出
a
−
b
=
1
/
a
b
a^-b=1/a^b
a−b=1/ab。例如,
2
−
3
/
2
2^{-3/2}
2−3/2就等于
1
/
8
1/\sqrt{8}
1/8。
对数是另一个抽象地看会变得更加容易的概念。关于对数,我在本系列文章中要说的不多。但如果它确实困扰你,那么你可以消除顾虑,只要了解它们遵循如下三条规则就足以使你去应用对数了。(如果你希望对数是以e为底而不是以10为底的,只需要在L1 中把10替换为e即可。)
L1 log(10)=1。
L2 log(xy)=log(x)+log(y)。
L3 若x<y,则log(x)<log(y)。
例如,要得到log(30)小于3/2,可以应用L1和L2得出log ( 1000) = log (10) +log (100) = log (10) +log (10) +log ( 10) =3。而由L2得出2log(30)=log(30)+log (30)=log(900),又由L3得到log(900)<log(1000)。因此2log(30)<3,即得log(30)<3/2。
在后面的文章里,我还将讨论许多类似性质的概念。试图具体地理解它们会让你感到困惑,但当你放轻松些,不再担心它们是什么并且应用抽象的方法时,这些概念的神秘性就消失了。
总结
抽象方法在数学中的应用是十分重要的,特别是在解释指数和对数运算中的特殊情况时。通过抽象方法,我们可以将熟悉的概念扩展到不熟悉的情况下,并赋予其新的意义。在指数运算中,通过基本规则E1和E2,我们可以推导出已知的结果,并且可以处理特殊情况如负指数和分数指数。同样地,在对数运算中,通过规则L1、L2和L3,我们可以解释对数的性质和比较大小。抽象方法的优越性在于它让我们放松对概念的具体理解,而是专注于应用抽象的规则和方法。当我们不再担心具体含义而放松地应用抽象方法时,这些概念的神秘性就会消失。抽象方法的应用不仅适用于数学中的问题,还可以扩展到其他领域,帮助我们解决复杂的情况并赋予新的意义。