彩色图像:每个像素由R、G、B三个分量表示,每个通道取值范围0~255。数据类型一般为8位无符号整形。
灰度图像:每个像素只有一个采样颜色的图像,这类图像通常显示为从最暗黑色到最亮的白色的灰度。
二值图像(黑白图像):每个像素点只有两种可能,0和1.0代表黑色,1代表白色。数据类型通常为1个二进制位。
索引图像:类似于查字典,为了解决彩色图像消耗空间大的问题,一般应用于色彩构成比较简单的场景。
彩色图像,每个像素通常是由红(R)、绿(G)、蓝(B)三个分量来表示的,分量介于(0,255)。RGB图像与索引图像一样都可以用来表示彩色图像。与索引图像一样,它分别用红(R)、绿(G)、蓝(B)三原色的组合来表示每个像素的颜色。但与索引图像不同的是,RGB
图像每一个像素的颜色值(由RGB
三原色表示)直接存放在图像矩阵中,由于每一像素的颜色需由R、G、B
三个分量来表示,M、N
分别表示图像的行列数,三个M x N
的二维矩阵分别表示各个像素的R、G、B
三个颜色分量。RGB图像的数据类型一般为8位无符号整形,通常用于表示和存放真彩色图像,当然也可以存放灰度图像。
灰度图像(gray image
)是每个像素只有一个采样颜色的图像,这类图像通常显示为从最暗黑色到最亮的白色的灰度,尽管理论上这个采样可以任何颜色的不同深浅,甚至可以是不同亮度上的不同颜色。灰度图像与黑白图像不同,在计算机图像领域中黑白图像只有黑色与白色两种颜色;但是,灰度图像在黑色与白色之间还有许多级的颜色深度。灰度图像经常是在单个电磁波频谱如可见光内测量每个像素的亮度得到的,用于显示的灰度图像通常用每个采样像素8位的非线性尺度来保存,这样可以有256级灰度(如果用16位,则有65536级)。
二值图像(binary image
),即一幅二值图像的二维矩阵仅由0、1
两个值构成,“0”代表黑色,“1”代白色。由于每一像素(矩阵中每一元素)取值仅有0、1两种可能,所以计算机中二值图像的数据类型通常为1个二进制位。二值图像通常用于文字、线条图的扫描识别(OCR)和掩膜图像的存储。
索引图像即它的文件结构比较复杂,除了存放图像的二维矩阵外,还包括一个称之为颜色索引矩阵MAP
的二维数组。MAP
的大小由存放图像的矩阵元素值域决定,如矩阵元素值域为[0,255]
,则MAP
矩阵的大小为256Ⅹ3
,用MAP=[RGB]
表示。MAP中每一行的三个元素分别指定该行对应颜色的红、绿、蓝单色值,MAP中每一行对应图像矩阵像素的一个灰度值,如某一像素的灰度值为64
,则该像素就与MAP
中的第64
行建立了映射关系,该像素在屏幕上的实际颜色由第64
行的[RGB]
组合决定。也就是说,图像在屏幕上显示时,每一像素的颜色由存放在矩阵中该像素的灰度值作为索引通过检索颜色索引矩阵MAP
得到。索引图像的数据类型一般为8位无符号整形(int8
),相应索引矩阵MAP
的大小为256Ⅹ3
,因此一般索引图像只能同时显示256
种颜色,但通过改变索引矩阵,颜色的类型可以调整。索引图像的数据类型也可采用双精度浮点型(double
)。索引图像一般用于存放色彩要求比较简单的图像,如Windows
中色彩构成比较简单的壁纸多采用索引图像存放,如果图像的色彩比较复杂,就要用到RGB
真彩色图像。