poj 2447解题报告

题目来源:http://poj.org/problem?id=2447

题目大意:

破解RSA。RSA是什么?这个世界有一种东西叫google,他的妻子是百度。。。

题目分析:

这是一道数论的综合题!经典!

用很多数论知识。其实如果有板子的话就是几句话的事。。。具体解法如下:

1.首先用miller-rabin,pollard_rho做大整数的质因数分解,得到两个素数P,Q,pollard_rho的复杂度在N^0.25次方,那么一个64位的整数 要计算的次数为 2^64^0.25=2^16 =65536次,可以瞬间出解。
2.求出phi(N)=(P-1)*(Q-1)
3.然后用ext_gcd求出E关于phi(N)的逆元。
4.用得到的私钥对数据C进行解密即可。

代码如下:

#include<stdio.h>
#include<string.h>
#include<stdlib.h>
#include<time.h>
#include<iostream>
#include<algorithm>
using namespace std;
//x 就是(a,b)的逆元
long long extgcd(long long a, long long b, long long &x, long long &y)
{
    long long d, t;
    if (b == 0)
    {
        x = 1;
        y = 0;
        return a;
    }
    d = extgcd(b, a % b, x, y);
    t = x - a / b * y;
    x = y;
    y = t;
    return d;
}

//****************************************************************
// Miller_Rabin 算法进行素数测试
//速度快,而且可以判断 <2^63的数
//****************************************************************
const int S=20;//随机算法判定次数,S越大,判错概率越小


//计算 (a*b)%c.   a,b都是long long的数,直接相乘可能溢出的
//  a,b,c <2^63
//计算A*B的时候,也可以将B化成2^n相加的式子。
//于是,我们可以将a*b mod c转换成[a*(2^b0+2^b1+……2^bn)] mod c=[a*2^b0+a*2^b1+……a*2^bn] mod c。
//利用公式(a+b)mod c=[(a mod c)+(b mod c)]mod c这个公式进行运算。
long long mult_mod(long long a,long long b,long long mod)
{
    long long ans = 0;
    while (b)
    {
        if (b & 1)
        {
            ans += a;
            if (ans >= mod) ans -= mod;
        }
        a <<= 1;
        if (a >= mod) a -= mod;
        b >>= 1;
    }
    return ans;
}



//计算  x^n %c,类似于计算a^b
long long pow_mod(long long x,long long n,long long mod)//x^n%c
{
    if(n==1)return x%mod;
    x%=mod;
    long long tmp=x;
    long long ret=1;
    while(n)
    {
        if(n&1) ret=mult_mod(ret,tmp,mod);
        tmp=mult_mod(tmp,tmp,mod);
        n>>=1;
    }
    return ret;
}





//以a为基,n-1=x*2^t      a^(n-1)=1(mod n)  验证n是不是合数
//一定是合数返回true,不一定返回false
bool check(long long a,long long n,long long x,long long t)
{
    long long ret=pow_mod(a,x,n);
    long long last=ret;
    for(int i=1; i<=t; i++)
    {
        ret=mult_mod(ret,ret,n);
        if(ret==1&&last!=1&&last!=n-1) return true;//合数
        last=ret;
    }
    if(ret!=1) return true;
    return false;
}

// Miller_Rabin()算法素数判定
//是素数返回true.(可能是伪素数,但概率极小)
//合数返回false;

bool Miller_Rabin(long long n)
{
    if(n<2)return false;
    if(n==2)return true;
    if((n&1)==0) return false;//偶数
    long long x=n-1;
    long long t=0;
    while((x&1)==0)
    {
        x>>=1;
        t++;
    }
    for(int i=0; i<S; i++)
    {
        long long a=rand()%(n-1)+1;//rand()需要stdlib.h头文件
        if(check(a,n,x,t))
            return false;//合数
    }
    return true;
}


//************************************************
//pollard_rho 算法进行质因数分解
//************************************************
long long factor[3];//质因数分解结果(刚返回时是无序的)
int tol;//质因数的个数。数组小标从0开始

long long gcd(long long a,long long b)
{
    if(a==0)return 1;//???????
    if(a<0) return gcd(-a,b);
    while(b)
    {
        long long t=a%b;
        a=b;
        b=t;
    }
    return a;
}

long long Pollard_rho(long long x,long long c)
{
    long long i=1,k=2;
    long long x0=rand()%x;
    long long y=x0;
    while(1)
    {
        i++;
        x0=(mult_mod(x0,x0,x)+c)%x;
        long long d=gcd(y-x0,x);
        if(d!=1&&d!=x) return d;
        if(y==x0) return x;
        if(i==k)
        {
            y=x0;
            k+=k;
        }
    }
}
//对n进行素因子分解
void findfac(long long n)
{
    if(Miller_Rabin(n))//素数
    {
        factor[tol++]=n;
        return;
    }
    long long p=n;
    while(p>=n)p=Pollard_rho(p,rand()%(n-1)+1);
    findfac(p);
    findfac(n/p);
}

int main()
{
    //srand(time(NULL));//需要time.h头文件//POJ上G++不能加这句话
    long long c,e,n;
    while(scanf("%I64d %I64d %I64d",&c,&e,&n) != EOF)
    {
        tol=0;
        findfac(n);
        //
        long long fai = (factor[0] - 1) * (factor[1] - 1);
        long long D,k;
        extgcd(e,fai,D,k);
        D = (D%fai + fai) % fai;
        //
        long long M = pow_mod(c,D,n);
        //printf("c = %I64d d = %I64d n = %I64d\n",c,D,n);
        printf("%I64d\n",M);
    }
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值