题目来源:http://poj.org/problem?id=2447
题目大意:
破解RSA。RSA是什么?这个世界有一种东西叫google,他的妻子是百度。。。
题目分析:
这是一道数论的综合题!经典!
用很多数论知识。其实如果有板子的话就是几句话的事。。。具体解法如下:
1.首先用miller-rabin,pollard_rho做大整数的质因数分解,得到两个素数P,Q,pollard_rho的复杂度在N^0.25次方,那么一个64位的整数 要计算的次数为 2^64^0.25=2^16 =65536次,可以瞬间出解。
2.求出phi(N)=(P-1)*(Q-1)
3.然后用ext_gcd求出E关于phi(N)的逆元。
4.用得到的私钥对数据C进行解密即可。
代码如下:
#include<stdio.h>
#include<string.h>
#include<stdlib.h>
#include<time.h>
#include<iostream>
#include<algorithm>
using namespace std;
//x 就是(a,b)的逆元
long long extgcd(long long a, long long b, long long &x, long long &y)
{
long long d, t;
if (b == 0)
{
x = 1;
y = 0;
return a;
}
d = extgcd(b, a % b, x, y);
t = x - a / b * y;
x = y;
y = t;
return d;
}
//****************************************************************
// Miller_Rabin 算法进行素数测试
//速度快,而且可以判断 <2^63的数
//****************************************************************
const int S=20;//随机算法判定次数,S越大,判错概率越小
//计算 (a*b)%c. a,b都是long long的数,直接相乘可能溢出的
// a,b,c <2^63
//计算A*B的时候,也可以将B化成2^n相加的式子。
//于是,我们可以将a*b mod c转换成[a*(2^b0+2^b1+……2^bn)] mod c=[a*2^b0+a*2^b1+……a*2^bn] mod c。
//利用公式(a+b)mod c=[(a mod c)+(b mod c)]mod c这个公式进行运算。
long long mult_mod(long long a,long long b,long long mod)
{
long long ans = 0;
while (b)
{
if (b & 1)
{
ans += a;
if (ans >= mod) ans -= mod;
}
a <<= 1;
if (a >= mod) a -= mod;
b >>= 1;
}
return ans;
}
//计算 x^n %c,类似于计算a^b
long long pow_mod(long long x,long long n,long long mod)//x^n%c
{
if(n==1)return x%mod;
x%=mod;
long long tmp=x;
long long ret=1;
while(n)
{
if(n&1) ret=mult_mod(ret,tmp,mod);
tmp=mult_mod(tmp,tmp,mod);
n>>=1;
}
return ret;
}
//以a为基,n-1=x*2^t a^(n-1)=1(mod n) 验证n是不是合数
//一定是合数返回true,不一定返回false
bool check(long long a,long long n,long long x,long long t)
{
long long ret=pow_mod(a,x,n);
long long last=ret;
for(int i=1; i<=t; i++)
{
ret=mult_mod(ret,ret,n);
if(ret==1&&last!=1&&last!=n-1) return true;//合数
last=ret;
}
if(ret!=1) return true;
return false;
}
// Miller_Rabin()算法素数判定
//是素数返回true.(可能是伪素数,但概率极小)
//合数返回false;
bool Miller_Rabin(long long n)
{
if(n<2)return false;
if(n==2)return true;
if((n&1)==0) return false;//偶数
long long x=n-1;
long long t=0;
while((x&1)==0)
{
x>>=1;
t++;
}
for(int i=0; i<S; i++)
{
long long a=rand()%(n-1)+1;//rand()需要stdlib.h头文件
if(check(a,n,x,t))
return false;//合数
}
return true;
}
//************************************************
//pollard_rho 算法进行质因数分解
//************************************************
long long factor[3];//质因数分解结果(刚返回时是无序的)
int tol;//质因数的个数。数组小标从0开始
long long gcd(long long a,long long b)
{
if(a==0)return 1;//???????
if(a<0) return gcd(-a,b);
while(b)
{
long long t=a%b;
a=b;
b=t;
}
return a;
}
long long Pollard_rho(long long x,long long c)
{
long long i=1,k=2;
long long x0=rand()%x;
long long y=x0;
while(1)
{
i++;
x0=(mult_mod(x0,x0,x)+c)%x;
long long d=gcd(y-x0,x);
if(d!=1&&d!=x) return d;
if(y==x0) return x;
if(i==k)
{
y=x0;
k+=k;
}
}
}
//对n进行素因子分解
void findfac(long long n)
{
if(Miller_Rabin(n))//素数
{
factor[tol++]=n;
return;
}
long long p=n;
while(p>=n)p=Pollard_rho(p,rand()%(n-1)+1);
findfac(p);
findfac(n/p);
}
int main()
{
//srand(time(NULL));//需要time.h头文件//POJ上G++不能加这句话
long long c,e,n;
while(scanf("%I64d %I64d %I64d",&c,&e,&n) != EOF)
{
tol=0;
findfac(n);
//
long long fai = (factor[0] - 1) * (factor[1] - 1);
long long D,k;
extgcd(e,fai,D,k);
D = (D%fai + fai) % fai;
//
long long M = pow_mod(c,D,n);
//printf("c = %I64d d = %I64d n = %I64d\n",c,D,n);
printf("%I64d\n",M);
}
return 0;
}