机器学习
文章平均质量分 85
Taylor Wu
这个作者很懒,什么都没留下…
展开
-
机器学习笔记1——线性回归,梯度下降
线性回归处理连续变量预测假设m个样本(x1,y1)....(xm,ym)h(x)=θ0*x0+θ1*x1+...+θm*xm 预测值J( θ)= ∑1/2*(yi-h(xi))^2 为误差,使得J( θ)最小即可对J( θ)求偏导,并令∂J( θ)/∂θ = 0即可另一种方法是梯度下降。令θ=(0,0,0,...0)θ = θ - α * ∂J( θ)/∂θ原创 2017-02-26 14:34:22 · 475 阅读 · 0 评论 -
机器学习笔记4
原文地址:http://blog.csdn.net/andrewseu/article/details/46789121本讲大纲:1.生成学习算法(Generative learning algorithm)2.高斯判别分析(GDA,Gaussian Discriminant Analysis) 3.朴素贝叶斯(Naive Bayes) 4.拉普拉斯平滑(Laplace转载 2017-02-27 17:12:26 · 322 阅读 · 0 评论 -
# 机器学习笔记2——参数学习、非参数学习、局部加权线性回归、线性回归的概率解释、logistics回归
机器学习笔记2——参数学习、非参数学习、局部加权线性回归、线性回归的概率解释、logistics回归原创 2017-02-26 16:11:06 · 1336 阅读 · 0 评论 -
机器学习笔记6
核函数在节中,我们的SVM分类器可以实现分类了 对于一个新的样本x,我们只需要计算这个新样本与训练集的內积即可,而且只会计算支持向量的內积,因为其他向量的=0。实际上,对于一个线性不可分样本集,我们一般做法是将其映射到更高甚至无限高的维度空间,来在高维情况下进行SVM分类例如 这时,我们用代替x即可。并令 其中即被称为核函数假设,原创 2017-03-02 22:54:19 · 510 阅读 · 0 评论 -
优化问题中的对偶理论
地址:http://xiaoyc.com/duality-theory-for-optimization/转载 2017-03-01 15:13:58 · 1042 阅读 · 0 评论 -
机器学习笔记5
本讲大纲:1.最优间隔分类器(optimal margin classifier) 2.原始/对偶优化问题(KKT)(primal/dual optimization problem) 3.SVM对偶(SVM dual) 4.核方法(kernels)(简要,下一讲详细)1.最优间隔分类器假设给我们的数据集是线性可分的(linearly separable). 就是说用超平面转载 2017-03-01 15:11:27 · 572 阅读 · 0 评论 -
拉格朗日对偶问题与KKT条件
本篇是写在SVM之前的关于优化问题的一点知识,在SVM中会用到。考虑到SVM之复杂,将其中优化方面基础知识提出,单作此篇。所以,本文也不会涉及优化问题的许多深层问题,只是个人知识范围内所了解的SVM中涉及到的优化问题基础。一、凸优化问题在优化问题中,凸优化问题由于具有优良的性质(局部最优解即是全局最优解),受到广泛研究。对于一个含约束的优化问题:{minxf(x)s.t.x∈C转载 2017-03-01 15:08:10 · 6148 阅读 · 0 评论 -
拉格朗日对偶
先抛开上面的二次规划问题,先来看看存在等式约束的极值问题求法,比如下面的最优化问题: 目标函数是f(w),下面是等式约束。通常解法是引入拉格朗日算子,这里使用来表示算子,得到拉格朗日公式为 L是等式约束的个数。 然后分别对w和求偏导,使得偏导数等于0,然后解出w和。至于为什么引入拉格朗日算子可以求出极值,原因转载 2017-02-28 20:12:28 · 517 阅读 · 0 评论 -
拉格朗日数乘法
阅读目录1. 拉格朗日乘数法的基本思想2. 数学实例3. 拉格朗日乘数法的基本形态4. 拉格朗日乘数法与KKT条件 拉格朗日乘数法(Lagrange Multiplier Method)之前听数学老师授课的时候就是一知半解,现在越发感觉拉格朗日乘数法应用的广泛性,所以特意抽时间学习了麻省理工学院的在线数学课程。新学到的知识一定要立刻记录下来,希望对各位博友有些许帮助。回到顶部转载 2017-02-28 20:02:07 · 17638 阅读 · 2 评论 -
机器学习3——牛顿方法、指数族、广义线性模型
原文地址:http://blog.csdn.net/andrewseu/article/details/46771947本讲大纲:1.牛顿方法(Newton’s method) 2.指数族(Exponential family) 3.广义线性模型(Generalized linear models)1.牛顿方法假设有函数:,我们希望找到满足的值. 这里是实数.牛转载 2017-02-26 17:04:17 · 640 阅读 · 0 评论 -
python 时间序列分析
1 时间序列与时间序列分析在生产和科学研究中,对某一个或者一组变量 x(t) 进行观察测量,将在一系列时刻 t1,t2,⋯,tn 所得到的离散数字组成的序列集合,称之为时间序列。 时间序列分析是根据系统观察得到的时间序列数据,通过曲线拟合和参数估计来建立数学模型的理论和方法。时间序列分析常用于国民宏观经济控制、市场潜力预测、气象预测、农作物害虫灾害预报等各个方面。2 时间序列建转载 2017-03-24 18:29:20 · 3071 阅读 · 2 评论