回溯法:是一种选优搜索法,又称为试探法,按选优条件向前搜索,以达到目标。但当探索到某一步时,发现原先选择并不优或达不到目标,就退回一步重新选择,这种走不通就退回再走的技术为回溯法。可以简单理解为,每个结点都分为k叉,一步一步往下搜,当出现不符合条件的结点时,进行剪枝,然后回溯到上一个结点,接着访问。
图k-着色问题(转自PTA)
图k-着色问题是一个著名的NP完全问题。给定无向图G=(V,E)和正整数k,问可否用k种颜色为V中的每个结点分配一种颜色,使得不会有两个相邻结点具有同一种颜色?
该问题的一个具体实例可能会有多个解(一个解就是一种合法的着色方案),要求计算全部解的数目。
输入格式:
输入的第一行包含三个整数N(1≤N≤20)、M(0≤M≤N(N−1)/2)和K(1≤K≤N),分别是无向图的结点数、边数和可用颜色数。
结点从1到N编号,颜色从1到K编号。随后M行,每行给出一条边的两个端点的编号。题目保证给定的无向图是简单图(即不存在自环和多重边)。
输出格式:
输出一行表示全部解的数目(无解时输出0即可)。
输入样例:
5 7 3
1 2
2 3
3 4
4 5
5 1
1 3
1 4
输出样例:
6
代码长度限制
16 KB
时间限制
400 ms
内存限制
64 MB
AC代码:
#include<iostream>
using namespace std;
int arr[21][21]={0};//邻接图
int color[21]={0};//记录该结点的颜色
int n=0, m=0, k=0, sum=0;
void np(int step)
{
if(step>n)
{
sum++;
return;
}
for(int i=1; i<=k; i++)
{
color[step]=i;
int flag=0;
for(int j=1; j<=n; j++)
{
if(arr[step][j]==1&&color[j]==i)
{
flag=1;
break;
}
}
if(flag==0)np(step+1);
color[step]=0;//要置零,当循环结束之后退回到上一步(回溯),该步的结点未被访问
}
}
int main()
{
scanf("%d%d%d", &n, &m, &k);
int a=0, b=0;
for(int i=1; i<=m; i++)
{
scanf("%d%d", &a, &b);
arr[a][b]=1;
arr[b][a]=1;
}
np(1);
printf("%d", sum);
return 0;
}
本题回溯法是用对应的步数来访问对应的结点,当然写成图的深度遍历也是可以的。本题需要注意的点是每次循环结束后要置零,如果不置零的话,该结点的颜色将被赋值为k,当回溯到上一步时就会产生逻辑上的错误。