回溯法——图k-着色问题

回溯法:是一种选优搜索法,又称为试探法,按选优条件向前搜索,以达到目标。但当探索到某一步时,发现原先选择并不优或达不到目标,就退回一步重新选择,这种走不通就退回再走的技术为回溯法。可以简单理解为,每个结点都分为k叉,一步一步往下搜,当出现不符合条件的结点时,进行剪枝,然后回溯到上一个结点,接着访问。


 图k-着色问题(转自PTA)

图k-着色问题是一个著名的NP完全问题。给定无向图G=(V,E)和正整数k,问可否用k种颜色为V中的每个结点分配一种颜色,使得不会有两个相邻结点具有同一种颜色?
该问题的一个具体实例可能会有多个解(一个解就是一种合法的着色方案),要求计算全部解的数目。

输入格式:

输入的第一行包含三个整数N(1≤N≤20)、M(0≤M≤N(N−1)/2)和K(1≤K≤N),分别是无向图的结点数、边数和可用颜色数。
结点从1到N编号,颜色从1到K编号。随后M行,每行给出一条边的两个端点的编号。题目保证给定的无向图是简单图(即不存在自环和多重边)。

输出格式:

输出一行表示全部解的数目(无解时输出0即可)。

输入样例:

5 7 3 
1 2 
2 3 
3 4 
4 5 
5 1 
1 3 
1 4 

输出样例:

6

代码长度限制

16 KB

时间限制

400 ms

内存限制

64 MB

AC代码:

#include<iostream>
using namespace std;
int arr[21][21]={0};//邻接图 
int color[21]={0};//记录该结点的颜色
int n=0, m=0, k=0, sum=0;
void np(int step)
{
	if(step>n)
	{
		sum++;
		return;
	}
	for(int i=1; i<=k; i++)
	{
		color[step]=i;
		int flag=0;
		for(int j=1; j<=n; j++)
		{
			if(arr[step][j]==1&&color[j]==i)
			{
				flag=1;
				break;
			}
		}
		if(flag==0)np(step+1);
		color[step]=0;//要置零,当循环结束之后退回到上一步(回溯),该步的结点未被访问
	}
} 
int main()
{
	scanf("%d%d%d", &n, &m, &k);
	int a=0, b=0;
	for(int i=1; i<=m; i++)
	{
		scanf("%d%d", &a, &b);
		arr[a][b]=1;
		arr[b][a]=1;
	}
	np(1);
	printf("%d", sum);
	return 0;
} 

本题回溯法是用对应的步数来访问对应的结点,当然写成图的深度遍历也是可以的。本题需要注意的点是每次循环结束后要置零,如果不置零的话,该结点的颜色将被赋值为k,当回溯到上一步时就会产生逻辑上的错误。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值