回溯法
问题背景
给定图的顶点v,顶点间的边邻接关系Graph[ ][ ],颜色的数量m,一共有多少种着色方法?
回溯法
- 基本思想:
回溯法有“通用的解题法”之称。用它可以系统地搜索一个问题的所有解或任一解。
回溯法是一种即带有系统性又带有跳跃性的搜索算法。它在问题的解空间树中,按深度优先策略,从根节点出发搜索解空间树。算法搜索至解空间树的任一结点时,先判断该节点是否包含问题的解。
如果不包含,则跳过对以该节点为根的子树的搜索,逐层向其它祖先节点回溯。
否则,进入该子树,继续按照深度优先策略搜索。回溯法求问题的所有解时,要回溯到根,且根节点的所有子树都已被搜索遍才结束。 - 基本步骤:
- 针对所给问题,定义问题的解空间
- 确定易于搜索的解空间结构
- 以深度优先方式搜索解空间,并在搜索过程中用剪枝函数避免无效搜索
回溯法下的图着色问题
过程:
- 将上述无向图转换为邻接矩阵Graph,并根据四色定理定义颜色数量m为4
- 由深度优先搜索解空间树,方法如下:
a) 取结点,并为结点上色
b) 判断当前结点的颜色是否为有效颜色(即不和相邻的顶点颜色一样)
c) 若为有效颜色,则按深度优先取下一个结点
d) 若为无效颜色,则换下一个颜色继续进行b步骤
e) 若所有颜色都为无效颜色,将当前结点颜色置为0,并回溯到上一个结点,进行a步骤
f) 当找到了一个解后,令全局变量sum值加一,并通过回溯搜索下一个解
g) 重复上述步骤,直到所有解被找到 - 输出所有的解以及统计解的个数
回溯法图着色问题-Python代码
本代码为python3下的回溯法图着色问题
关键步骤已标记注释
import numpy as np
# 顶点个数
V=5
# 颜色种类
m=4
# 邻接矩阵
Graph=np.array([[0,1,1,1,