图着色问题 —— 【算法设计】回溯法

本文介绍了如何利用回溯法解决图着色问题。根据四色定理,颜色数量设为4,通过深度优先搜索解空间树,判断并尝试给每个顶点涂色。如果遇到无效颜色,回溯至上一顶点尝试其他颜色,直至找到所有可能的着色方案。文章附有Python代码实现。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

回溯法
问题背景

给定图的顶点v,顶点间的边邻接关系Graph[ ][ ],颜色的数量m,一共有多少种着色方法?
在这里插入图片描述


回溯法
  • 基本思想:
    回溯法有“通用的解题法”之称。用它可以系统地搜索一个问题的所有解或任一解。
    回溯法是一种即带有系统性又带有跳跃性的搜索算法。它在问题的解空间树中,按深度优先策略,从根节点出发搜索解空间树。算法搜索至解空间树的任一结点时,先判断该节点是否包含问题的解。
    如果不包含,则跳过对以该节点为根的子树的搜索,逐层向其它祖先节点回溯。
    否则,进入该子树,继续按照深度优先策略搜索。回溯法求问题的所有解时,要回溯到根,且根节点的所有子树都已被搜索遍才结束。
  • 基本步骤:
  1. 针对所给问题,定义问题的解空间
  2. 确定易于搜索的解空间结构
  3. 以深度优先方式搜索解空间,并在搜索过程中用剪枝函数避免无效搜索

回溯法下的图着色问题

在这里插入图片描述过程:

  1. 将上述无向图转换为邻接矩阵Graph,并根据四色定理定义颜色数量m为4
  2. 由深度优先搜索解空间树,方法如下:
    a) 取结点,并为结点上色
    b) 判断当前结点的颜色是否为有效颜色(即不和相邻的顶点颜色一样)
    c) 若为有效颜色,则按深度优先取下一个结点
    d) 若为无效颜色,则换下一个颜色继续进行b步骤
    e) 若所有颜色都为无效颜色,将当前结点颜色置为0,并回溯到上一个结点,进行a步骤
    f) 当找到了一个解后,令全局变量sum值加一,并通过回溯搜索下一个解
    g) 重复上述步骤,直到所有解被找到
  3. 输出所有的解以及统计解的个数

回溯法图着色问题-Python代码

本代码为python3下的回溯法图着色问题
关键步骤已标记注释

import numpy as np
# 顶点个数
V=5

# 颜色种类
m=4

# 邻接矩阵
Graph=np.array([[0,1,1,1,
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值