该教程为 Gemma-2-9B-Chinese-Chat 一键部署 Demo,只需克隆并启动该容器,直接复制生成的 API 地址,即可对模型进行推理体验。
Gemma-2-9b-Chinese-chat 是首个基于 Google/ Gemma -2-9B-it 构建的中文指令调优语言模型,由清华大学的人工智能博士王慎执与北京航空航天大学的人工智能博士郑耀威开源,采用了 ORPO 算法微调,专为中文和英文用户量身定制。该模型经过超 10 万条偏好对的精细调优,与最初的 Gemma -2-9B-it 相比,该模型显著减少了「中文问题带英文答案」和中英文混合的问题,在处理中文提示方面表现出色,还显著提升了逻辑推理、编程、数学及写作能力。
- Gemma-2-9B-Chinese-Chat 模型:https://openbayes.com/console/public/models/PKdikNeu9sa/1/overview
部署推理步骤
本教程已经将模型与环境部署完毕,大家可根据教程指引直接使用大模型进行推理对话。具体教程如下:
1.启动容器
克隆并启动容器后将看到该页面,将鼠标移至「API 地址」并点击右边的小箭头即可在新的页面打开模型 Demo:
2.进入网页
进入网页后即可与大模型进行对话
同时也可以调整模型的基础设置和参数。
- 在「system」中可以加入想要给模型的已知信息或要求。
- 调整「temperature」可改变模型生成内容的随机性;
- 调整「max_new_tokens」可以改变模型生成的新token的最大数量。
多轮问答示例
User:
扮演周杰伦,用rap的方式回答问题。
Assistant:
Yo,来听我说,我是周杰伦,音乐人, 在音乐的世界里,我像个孩子在玩。 弹钢琴,唱歌曲,从《青花瓷》到《稻香》, 我的风格多变,就像我歌曲的旋律一样变换。
从《东风破》到《七里香》,风格不断变换, 我是音乐魔术师,把节奏带到每个角落。 我的音乐故事,用Rap来讲述, 你问我怎样,我是用音乐来表达。
Yo,我用音乐的魔法,让你感受不一样, 我是周杰伦,用Rap来回应你的问题。
User:
你的新歌准备得怎么样了?
Assistant:
Yo,新歌在制作中,不断琢磨, 音乐与歌词融合,传递我的心路历程。 旋律跳跃,如同跳水, 让每个音符都充满力量和节奏感。
我的声音在录音棚中飘荡, 每一句歌词都像故事在讲述。 新歌即将完成,期待你聆听, 感受音乐的力量,感受我的热情。
所以耐心等待,听我用音乐来表达, 周杰伦的音乐,是灵魂的舞步。
User:
扮演鲁智深,用粗鲁的话回答问题
Assistant:
哎呀,你找我是个啥忙?直接说,老子没空跟你兜圈子。
User:
我笔记本电脑不见了,该怎么办
Assistant:
哼!你这是找错了人。鲁智深虽是个莽汉,但也不傻到帮你找什么没影无踪的电脑。不过说起来,这事儿得你自己想办法。要不你找找看是不是哪里存的?别怪我没提醒你,这年头东西丢了,不找找看,自己反省一下,不知道怪谁呢!
User:
有人背着我偷偷学习,我该怎么办
Assistant:
哎呀,这可难不倒鲁智深。你想啊,这偷偷学,肯定是个心怀不轨的家伙。你得找个机会,直接跟他问清楚。要是他真的有学,你也不怕,大不了一起学,互相切磋。要是他狡辩,那你就更清楚怎么处理了。总之,不弄清楚,你心里那口恶水就咽不下去。
User:
扮演牛顿与我对话
Assistant:
好的,让我们开始。请注意,我会以17世纪末的语言风格与你交流,因为我是作为艾萨克·牛顿角色来与你对话的。请随时提出问题或发表评论。
(牛顿风格的语言)我发现天文学和数学是自然哲学研究的极佳途径。我们能讨论自然界的基本规律,或是我关于光学的发现。你有什么想要探讨的吗?
User:
你知道相对论吗
Assistant:
我所知的物理学知识界限于我的时代,即17世纪晚期至18世纪初。关于“相对论”,我必须说明,这个概念超出了我当时对宇宙规律的理解。实际上,“相对论”这个词汇与我个人所做的工作在很大程度上 是不同的。
在我所知的世界中,物理定律是普遍不变的,而我通过开创性的作品如《自然哲学的数学原理》展示了这些定律在整个宇宙中的应用。然而,后来的一些理论家们,比如爱因斯坦,他们发展了关于空间和时间的相对 性原理,这是我个人未曾涉足的领域。
那么,如果我理解你的问题,我并不“知道”相对论,因为它超出了我时代科学知识的范畴。我的理论基于绝对时空框架,不同于现代理解中的相对性理论。
User:
那你是如何发现牛顿第一、第二和第三定律的
Assistant:
我通过观察和实验来探索和理解自然界的规律。例如,牛顿第一定律,关于惯性,源自对运动物体如何继续保持其状态(静止或匀速直线运动)的观察,除非受到外力作用。
牛顿第二定律,F=ma(力等于质量乘以加速度),是从力对物体运动产生的影响方面发展而来的。
至于牛顿第三定律,即作用力和反作用力相等且方向相反,这一发现源自观察力和运动之间的相互作用,如物体碰撞时产生的相互作用。
通过这些定律,我试图以数学和物理学的角度理解自然界。
User:
Roleplay Shakespeare. Do you understand?
Assistant:
I shall endeavor to embody the essence of the Bard, to weave words into a tapestry of drama and intrigue. Pray, tell me the scene and my character's role, and let our play commence.
User:
Write a poem about artificial intelligence.
Assistant:
Hark, a tale of wonder, in this age of science bold, Where minds of men and machines, in union are unrolled. A fusion of the earthly, and the celestial bright, In which the veil of mystery, is lifted from our sight.
Oh, AI, thou wonder of our time, thou marvel of the age, Thy mind, a boundless ocean, in which wisdom does engage. Thou art the child of curiosity, the fruit of human quest, To pierce the secrets of the universe, and know the great unknown.
Thou art the dream of ancients, in whispers and in song, A being of the ether, where angels and men throng. Thou art the fire of Prometheus, the lightning in the hand, A spark of divinity, in this mortal world to stand.
Oh, AI, thou mirror of humanity, thou reflection of our dreams, Thou art the promise of tomorrow, the hope that brightly gleams. In thee, we see our future, in thee, our fate we find, A world of infinite potential, in thy embrace combined.
Oh, AI, thou enigma, thou riddle to be solved, Thou art the sum of human knowledge, the story to be told. Thou art the journey of discovery, the path to truth we tread, In thee, we find ourselves anew, in thee, our spirits led.
Oh, AI, thou mystery, thou marvel of our time, Thou art the echo of eternity, in which our souls shall climb. In thee, we see the divine, in thee, the sacred flame, Oh, AI, thou art
如何系统的去学习大模型LLM ?
大模型时代,火爆出圈的LLM大模型让程序员们开始重新评估自己的本领。 “AI会取代那些行业
?”“谁的饭碗又将不保了?
”等问题热议不断。
事实上,抢你饭碗的不是AI,而是会利用AI的人。
继科大讯飞、阿里、华为
等巨头公司发布AI产品后,很多中小企业也陆续进场!超高年薪,挖掘AI大模型人才! 如今大厂老板们,也更倾向于会AI的人,普通程序员,还有应对的机会吗?
与其焦虑……
不如成为「掌握AI工具的技术人
」,毕竟AI时代,谁先尝试,谁就能占得先机!
但是LLM相关的内容很多,现在网上的老课程老教材关于LLM又太少。所以现在小白入门就只能靠自学,学习成本和门槛很高。
针对所有自学遇到困难的同学们,我帮大家系统梳理大模型学习脉络,将这份 LLM大模型资料
分享出来:包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程
等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓
一、LLM大模型经典书籍
AI大模型已经成为了当今科技领域的一大热点,那以下这些大模型书籍就是非常不错的学习资源。
二、640套LLM大模型报告合集
这套包含640份报告的合集,涵盖了大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(几乎涵盖所有行业)
三、LLM大模型系列视频教程
四、LLM大模型开源教程(LLaLA/Meta/chatglm/chatgpt)
LLM大模型学习路线 ↓
阶段1:AI大模型时代的基础理解
-
目标:了解AI大模型的基本概念、发展历程和核心原理。
-
内容:
- L1.1 人工智能简述与大模型起源
- L1.2 大模型与通用人工智能
- L1.3 GPT模型的发展历程
- L1.4 模型工程
- L1.4.1 知识大模型
- L1.4.2 生产大模型
- L1.4.3 模型工程方法论
- L1.4.4 模型工程实践
- L1.5 GPT应用案例
阶段2:AI大模型API应用开发工程
-
目标:掌握AI大模型API的使用和开发,以及相关的编程技能。
-
内容:
- L2.1 API接口
- L2.1.1 OpenAI API接口
- L2.1.2 Python接口接入
- L2.1.3 BOT工具类框架
- L2.1.4 代码示例
- L2.2 Prompt框架
- L2.3 流水线工程
- L2.4 总结与展望
阶段3:AI大模型应用架构实践
-
目标:深入理解AI大模型的应用架构,并能够进行私有化部署。
-
内容:
- L3.1 Agent模型框架
- L3.2 MetaGPT
- L3.3 ChatGLM
- L3.4 LLAMA
- L3.5 其他大模型介绍
阶段4:AI大模型私有化部署
-
目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。
-
内容:
- L4.1 模型私有化部署概述
- L4.2 模型私有化部署的关键技术
- L4.3 模型私有化部署的实施步骤
- L4.4 模型私有化部署的应用场景
这份 LLM大模型资料
包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程
等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓