背景
使用 Obsidian 来记录笔记已经有很多年了,近几年 AI 普及之后就一直想着能把 Obsidian 作为本地知识库对接 AI 来使用。但是因为这些年在 Obsidian 里面记录了不少隐私的东西,担心使用云端的 AI 服务不安全,而在尝试了 Obsidian 的一些 RAG 相关的插件之后,效果又都不是很好,这个事情于是就搁置了。
然后是 RAGFlow,最早去年初就试用过,但是尝试上传了几个 pdf 文件解析都失败了,之后每隔几个月都会再尝试一下更新后会不会更好用,但是也没有明显的改善。直到前两天看到一篇文章,介绍了一个新思路,就是用 mineru 来解析 pdf 文件,然后再调用 RAGFlow 的 API 来直接将解析后的文本传入 RAGFlow 的知识库。自己手动尝试了一下之后,发现真的好用,于是这才开始真正使用 RAGFlow 来作为自己的本地知识库。(关于这个方案,因为原始方案的坑比较多,后面我会再写一篇详细的保姆级教程来讲)
RAGFlow的安装步骤和配置
关于 RAGFlow 的安装,可参考官网,在此就不赘述:
https://github.com/infiniflow/ragflow/blob/main/README_zh.md
安装好之后,设置好大模型,我目前都是用本地 Ollama 跑的,如下:
RAGFlow 模型设置
然后是创建知识库,注意要记住知识库的名字,例如我这里是"obsidian",如下图:
obsidian 知识库
obsidian-ragflow-sync 插件安装步骤
在开始真正使用 RAGFlow 之后,目前 pdf 文件的导入和使用已经没问题了,下一步就是考虑 Obsidian 里的笔记,于是很自然的想到,能否使用类似的思路,把 Obsidian 里的笔记自动同步到 RAGFlow 的知识库里面。先搜了一下,发现目前没有现成的 Obsidian 插件可以干这个,所以干脆直接让 AI 来帮我写一个这样的插件。
这里要吐槽一下 Cursor,一开始是让 Cursor 来写的,但最近 Cursor 降智很明显,写出来的插件功能很简单,关键是一堆错误,改了几遍都改不好。刚好这两天在试用 AI IDE 的后起之秀 Augment,没想到效果出奇的好,不单单完成了我要起的功能,还很贴心的增加了一个控制的界面。
下面进入正题,说一下如何使用,因为目前已经申请发布到 Obsidian 官方的插件市场,但是审核还需要时间,所以暂时只能手动安装:
- 进入项目主页,https://github.com/colin4k/obsidian-ragflow-sync,点击右侧 "Release"下面的"1 tags",然后点击版本号"1.0.0",下载压缩包
项目主页
- 解压后,将三个文件 main.js,style.css,manifest.json 放在目录obsidian-ragflow-sync下面(注意一定要叫这个名字),然后复制到你的 Obsidian 仓库的插件目录,例如 :MyVault/.obsidian/plugins/
- 然后重启 Obsidian - 进入 Obsidian 的设置页面,然后选择“第三方插件”,找到“RAGFlow Sync”,打开它
- 再点击小齿轮,进入插件的设置界面,主要设置如下:
插件设置
- API Key:即 RAGFlow 提供的 API Key,在 RAGFlow 主页点击右上角头像,然后在左侧菜单栏找到“API”页面进入即可创建
API 页面
创建 API Key
- Base URL:RAGFLow 的URL,如 http://localhost:80
- Knowledge Base Name:也就是前面创建的知识库的名称 'obsidian'
- Sync Startup:是否在 Obsidian 启动时自动同步,按需设置
- Exclude Folds:按需设置,建议保持默认
- Chunk Size:建议 384
- 设置好之后,在 Obsidian 中进入命令窗口,不知道怎么进的,注意看左侧工具栏的这个位置:
Obsidian 命令窗口
- 这时会弹出控制窗口,点击左下角的'Start Sync'即可开始同步,这里需要注意:
插件控制界面
- 开始同步之后,点击任意地方会退出控制界面,但是后台仍会继续同步,除非你手动点击'Stop Sync',或者退出 Obsidian
- 也可以通过打开 View - Toggle Developer Tools 查看后台同步进度
- 有部分笔记因为内容格式问题,会被 RAGFlow 拒绝,这个只能你自己手动调整了。
最后看看效果吧:
和 Obsidian 知识库对话
好了,到此为止,完全基于本地知识库的 RAGFlow + Obsidian 的搭建就完成了
如何系统的去学习大模型LLM ?
大模型时代,火爆出圈的LLM大模型让程序员们开始重新评估自己的本领。 “AI会取代那些行业
?”“谁的饭碗又将不保了?
”等问题热议不断。
事实上,抢你饭碗的不是AI,而是会利用AI的人。
继科大讯飞、阿里、华为
等巨头公司发布AI产品后,很多中小企业也陆续进场!超高年薪,挖掘AI大模型人才! 如今大厂老板们,也更倾向于会AI的人,普通程序员,还有应对的机会吗?
与其焦虑……
不如成为「掌握AI工具的技术人
」,毕竟AI时代,谁先尝试,谁就能占得先机!
但是LLM相关的内容很多,现在网上的老课程老教材关于LLM又太少。所以现在小白入门就只能靠自学,学习成本和门槛很高。
基于此,我用做产品的心态来打磨这份大模型教程,深挖痛点并持续修改了近70次后,终于把整个AI大模型的学习门槛,降到了最低!
在这个版本当中:
第一您不需要具备任何算法和数学的基础
第二不要求准备高配置的电脑
第三不必懂Python等任何编程语言
您只需要听我讲,跟着我做即可,为了让学习的道路变得更简单,这份大模型教程已经给大家整理并打包,现在将这份 LLM大模型资料
分享出来:包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程
等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓
一、LLM大模型经典书籍
AI大模型已经成为了当今科技领域的一大热点,那以下这些大模型书籍就是非常不错的学习资源。
二、640套LLM大模型报告合集
这套包含640份报告的合集,涵盖了大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(几乎涵盖所有行业)
三、LLM大模型系列视频教程
四、LLM大模型开源教程(LLaLA/Meta/chatglm/chatgpt)
五、AI产品经理大模型教程
LLM大模型学习路线 ↓
阶段1:AI大模型时代的基础理解
-
目标:了解AI大模型的基本概念、发展历程和核心原理。
-
内容:
- L1.1 人工智能简述与大模型起源
- L1.2 大模型与通用人工智能
- L1.3 GPT模型的发展历程
- L1.4 模型工程
- L1.4.1 知识大模型
- L1.4.2 生产大模型
- L1.4.3 模型工程方法论
- L1.4.4 模型工程实践
- L1.5 GPT应用案例
阶段2:AI大模型API应用开发工程
-
目标:掌握AI大模型API的使用和开发,以及相关的编程技能。
-
内容:
- L2.1 API接口
- L2.1.1 OpenAI API接口
- L2.1.2 Python接口接入
- L2.1.3 BOT工具类框架
- L2.1.4 代码示例
- L2.2 Prompt框架
- L2.3 流水线工程
- L2.4 总结与展望
阶段3:AI大模型应用架构实践
-
目标:深入理解AI大模型的应用架构,并能够进行私有化部署。
-
内容:
- L3.1 Agent模型框架
- L3.2 MetaGPT
- L3.3 ChatGLM
- L3.4 LLAMA
- L3.5 其他大模型介绍
阶段4:AI大模型私有化部署
-
目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。
-
内容:
- L4.1 模型私有化部署概述
- L4.2 模型私有化部署的关键技术
- L4.3 模型私有化部署的实施步骤
- L4.4 模型私有化部署的应用场景
这份 LLM大模型资料
包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程
等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓