与大模型的单次对话相比,多轮对话过程中,维护了上下文信息(也可以说是保存了每次的提问与返回的答案信息),这样每次问大模型新的问题时候,实际上是携带者历史的所有聊天内容进行提问,大模型于是就知道了新问题的上下文。
1、导入大模型包
from http import HTTPStatus
//pip install dashscope
from dashscope import Generation
2、创建保存上下文信息的变量,此处是列表
messages = [{'role': 'system', 'content': 'You are a helpful assistant.'},
{'role': 'user', 'content': '如何做西红柿炖牛腩?'}]
3、向大模型提问
response = Generation.call(model="qwen-turbo",messages=messages,result_format='message')
4、将大模型的回复,追加到上下文变量中,即 列表中
messages.append({'role': response.output.choices[0]['message']['role'],
'cont