通义千问-大模型,多轮对话原理与实现

与大模型的单次对话相比,多轮对话过程中,维护了上下文信息(也可以说是保存了每次的提问与返回的答案信息),这样每次问大模型新的问题时候,实际上是携带者历史的所有聊天内容进行提问,大模型于是就知道了新问题的上下文。

1、导入大模型包

from http import HTTPStatus
//pip install dashscope
from dashscope import Generation

2、创建保存上下文信息的变量,此处是列表

messages = [{'role': 'system', 'content': 'You are a helpful assistant.'},
            {'role': 'user', 'content': '如何做西红柿炖牛腩?'}]

3、向大模型提问

response = Generation.call(model="qwen-turbo",messages=messages,result_format='message')

4、将大模型的回复,追加到上下文变量中,即 列表中

messages.append({'role': response.output.choices[0]['message']['role'],
                     'cont
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值