mini_Xception架构

参考文献:Real-time Convolutional Neural Networks for Emotion and Gender Classification

1.mini_Xception架构受到了Xception架构的启发,结合了残差模块和深度可分离卷积的使用。残差模块修改了后续两个层之间所期望的映射,学习到的特征成为了原始特征图和期望的特征图之间的不同。mini_Xception结构在去掉最后的全连接层的基础上,通过消除卷积层中的参数来进一步减少参数的数量,架构大约有60000个参数,与传统的卷积神经网络相比减少了80倍。

2. mini_Xception架构是一个全卷积神经网络,包含四个残差深度可分离卷积,每个卷积后添加批标准化和ReLU激励函数。最后的层使用了全局平均池(global average pooling)和soft-max激励函数去做出预测。

3. 该体系结构在性别分类任务中获得了95%的准确率。在FER-2013数据集上测试情感分类任务获得了的66%的准确率。最终的架构可以存储在一个855kb的文件中。

min_Xception架构图

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

WuwuwuH_

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值