旋转数组的最小数字
题目描述
把一个数组最开始的若干个元素搬到数组的末尾,我们称之为数组的旋转。
输入一个非递减排序的数组的一个旋转,输出旋转数组的最小元素。
例如数组{3,4,5,1,2}为{1,2,3,4,5}的一个旋转,该数组的最小值为1。
NOTE:给出的所有元素都大于0,若数组大小为0,请返回0。
直接查找
寻找非递减排序数组的旋转数组的最小值,例如[3,3,4,4,5],旋转后[4,4,5,3,3]。发现如果找到某一个元素比前一个元素小那么该元素必定是数组中的最小值。
时间复杂度O(n)。
class Solution {
public:
int minNumberInRotateArray(vector<int> rotateArray) {
int len = rotateArray.size();
if (len == 0) {
return 0;
}
int index = 0;
while (rotateArray[index + 1] >= rotateArray[index] && index < len - 1)
{
index++;
}
return rotateArray[index+1];
}
};
二分查找
最小元素为二个递增数组的分界线,如果mid元素大于left元素,那么mid元素仍在第一个递增数组的区域,left=mid+1;如果mid元素小于right元素,那么mid元素处于第二个递增数组的区域,right=mid(不为mid-1,因为不能保证mid前一个元素处于第二个递增数组的区域);其他情况无法判断左右半边是否有序则将left往后移动,(left>mid=right,left=mid>right,left=mid=right,left>mid>right舍弃),发现left=mid=right可能会出现问题,比如[4,0,4,4,4],会将0检查不出来。如果形成了left与right之差一个索引的位置,那么则是找到了答案,left元素为第一个递增数组的最后一个元素,right元素为第二个递增数组的第一个元素,right元素即为最小元素。
时间复杂度O(logn)。
class Solution {
public:
int minNumberInRotateArray(vector<int> rotateArray) {
int len = rotateArray.size();
if (len == 0)
{
return 0;
}
int left = 0, right = len - 1, mid;
while (left < right)
{
if (rotateArray[left] < rotateArray[right])
{
return rotateArray[left];
}
mid = (left + right) >> 1;
if (rotateArray[mid] > rotateArray[left])
{
left = mid + 1;
}
else if (rotateArray[mid] < rotateArray[left])
{
right = mid;
}
else
{
left++;
}
}
return rotateArray[left];
}
};