STM32平衡车

本文档详细介绍了基于STM32的平衡车制作过程,包括硬件选购、PCB设计和两种关键算法:PID及Mahony算法。项目采用STM32F103C8T6,集成PID控制和IMU姿态解算,通过蓝牙模块实现远程控制。硬件部分涉及直流电机、陀螺仪、蓝牙模块等组件。在算法实现中,深入探讨了PID参数调优策略,并解析了Mahony滤波算法用于姿态解算。
摘要由CSDN通过智能技术生成

0. 关于本项目

首先附上本项目的GitHub仓库

本项目使用STM32F103C8T6作为主控,Keil5开发,Mahony算法进行姿态解算的平衡车。项目中给出了MPU6050ICM20602ICM42605三种主流IMU的驱动。目前仅实现了直立平衡,在设计设加入了BlueTooth模块,手机遥控部分还在开发中(新建文件夹) (°ー°〃)

首先需要的前提知识有:

  • Keil5的使用
  • STM32有一定了解
  • 电机驱动的原理,使用

1. 硬件

  1.1 器件购买

要制作一台平衡小车,需要用到的硬件材料有:轮子、带编码器的直流电机、电机排线、面包板、杜邦线、STM32、稳压模块、蓝牙模块、电机驱动模块、陀螺仪模块、超声波模块、电池、底盘、螺栓、铜柱、固定轧带、开关等。下面是物料表:

类型链接数量
MG513P20_12V 电机直流减速电机带光电霍尔编码器码盘测速1
电池2S锂电池及充电器1
5V DCDC稳压 DCDC降压模块 12V转5V3A1
LCD ST7789主控 240×2401.3寸ips TFT显示屏ips液晶屏1

其余器件见下表格

ID名称型号数量
1STM32最小系统板STM32F103C8T61
2电机驱动TB6612FNG1
3陀螺仪MPU6050或ICM42605、206021
4蓝牙HC-071
510uF钽电容6.3V,3528,3.52.82.1mm1
620uF钽电容6.3V,3528,3.52.82.1mm1
7电机插座、排线6P-2.54mm 10cm排线2
8T型头航模电池T型头1
9AMS1117-3.3VAMS1117-3.3V贴片1
10开关摇臂开关2
11铜柱六角3mm若干
12扎带3.6mm若干

  1.2 PCB

目前是第一版,画的很菜,用到的都是插接件,线也布的很乱 (:3」∠)。后续还会更新PCB(计划换成贴片,体积会更小)
请添加图片描述
实物照片

  1.3 车模

请添加图片描述

SolidWorks画的简单底板尺寸如图(mm),用3D打印机制造,源文件在学校电脑上,回学校了再上传。
请添加图片描述

2. 算法

  2.1 PID算法

  2.1.1 理论分析

该项目为使的小车平衡最主要的两个环就是直立环和速度环,通过叠加得到最终给电机的输出,这也是网上绝大多数的小车平衡控制方法。

  1. 我们先使用常规的速度负反馈算法想象一下。首先我们给定一个目标速度值,由于小车在直立控制的作用下,此时小车要向前倾斜以获取加速度,车轮需要往后运动,这样小车速度就会下降。因为是负反馈,速度下降之后,速度控制的偏差增大,小车往前倾斜的角度增大,如此反复,小车便会倒下。
  2. 为保证直立控制的优先级,我们把速度控制放在直立控制的前面,也就是速度控制调节的结果仅仅是改变直立控制的目标值。因为根据经验可知,小车的运行速度和小车的倾角是相关的。比如要提高小车向前行驶的速度,就需要增加小车向前倾斜的角度,倾斜角度加大之后,车轮在直立控制的作用下需要向前运动。因此直立环的Kp后面乘的值并不是当前角度-机械中值,而是一个我们速度的期望。(这个理解了很重要!!!!)

a 1 = K p ∗ ( θ − a 2 ) + K d ∗ θ ′ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ① 直 立 环 a_1=Kp*(\theta-a_2)+Kd*\theta' \qquad········································①直立环 a1=Kp(θa2)+Kdθ

a 2 = K p 1 ∗ E r r s p e e d + K i 1 ∗ ∑ E r r s p e e d   ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ② 速 度 环 a_2=Kp_1*Err_{speed}+Ki_1*\sum Err_{speed}\space \qquad·····························②速度环 a2=Kp1Errspeed+Ki1Errspeed 

合并一下就可以得到:

a = K p ∗ ( θ ) + K d ∗ θ ′ − K p [ k p 1 ∗ E r r s p e e d + k i 1 ∗ ∑ E r r s p e e d ] ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ③ 最 终 式 a=Kp*(\theta)+Kd*\theta'-Kp[kp_1*Err_{speed}+ki_1*\sum Err_{speed}] \qquad········③最终式 a=Kp(θ)+KdθKp[kp1Errspeed+ki1Errspeed]

因此在代码实现上我们就可以实现两个环的直接相加或相减,在TIM3定时器中10ms一个周期进行控制。

      Balance_PID_Result = Position_PID_Cal(&Balance_PID, imu.Roll + 0.3f);
      if (Time_GAP_20ms) Velocity_PID_Result = Position_PID_Cal(&Velocity_PID, Velocity);

      PID_Result = Balance_PID_Result + Velocity_PID_Result;
      Set_Motor_Speed(PID_Result, PID_Result);

  2.1.2 调参经验

根据上边的分析我们只需要分别调整直立环的Kp,kd和速度环的Kp,Ki

  1. 对于直立环的Kp,是调整最方便观察现象的,太小时小车没有足够的恢复力,太大时小车会在中值附近大幅震荡,调整到一个略微震荡的值即可
  2. 直立环的Kd作用是减小低频振荡,但Kd太大小车又会造成高频振动,从小到大增大Kd,直到小车出现小幅高频振荡
  3. 直立环调整结束后小车可以平衡,但受到扰动便会往一个方向疯跑,现在引入直立环
  4. 网上查到的资料对于速度环Ki = Kp/200 ,但在我的实际调整中最终确定了Ki = Kp/100,这个看自己小车了,可以先按照Ki = Kp/200去调
  5. 先将直立环Kp,Kd同时×0.8。调整速度环Kp,速度环Kp越大,小车便越不会出现向一个方向狂奔的情况(因为速度被速度环控住了),但会减弱直立环的控制效果,因此调整到一个车受到干扰会摇摇晃晃停下的一个状态。
  6. 摇摇晃晃的原因就是因为速度环Kp太大,回调速度环Kp,并且增大直立环Kd(想想Kd的作用是什么呢?)

以上就是我调参的经验,可以参考,最好可以理解原理再去上手实践。

  2.2 Mahony算法

参考一篇文章:基于Manony滤波算法的姿态解算

  2.2.1 IMU(以MPU6050举例)

MPU6050是一个集成了陀螺仪和加速度计的传感器,它能输出在直角坐标系下的x,y,z轴的角速度和加速度数据。

陀螺仪输出的格式为:绕x轴的旋转角速度,绕y轴的角速度,绕z轴的角速度(分别称为roll角速度,pitch角速度和yaw角速度)。

加速度计输出的格式为:x轴的加速度,y轴的加速度,z轴的加速度。

另外还需要关注传感器的其他参数如:

  • 陀螺仪的量程:eg.±2000dps
  • 加速度计的量程:eg.±2g
  • ADC转换精度为16bit
  • 传感器采样率4-1000hz:eg.1000hz

我们从IMU那就得到了陀螺仪数据gx,gy,gz,加速度数据az,ay,az

螺仪转换精度2^16=65536 , 65536/{2000-(-2000)}=16.4,实际1°等于ADC值16.4

采样率就是数据的更新率,也就是我们每次读取数据的频率。

首先将陀螺仪的数据转换成角度,这里封装成一个函数

  2.2.2 算法实现

static void Get_IMU_Values(float *values)
{
	int16_t gyro[3],acc[3];
	IMU_readGyro_Acc(&gyro[0],&acc[0]);
	for(int i=0;i<3;i++)
	{
        //gyro range +-2000; adc accuracy 2^16=65536; 65536/4000=16.4;
		values[i]=((float) gyro[i])/16.4f;	
		values[3+i]=(float) acc[i];
	}
}

然后编写函数实现计算姿态角的功能,使用四元数计算姿态角的公式在理论分析中推导:

其中α为绕x轴旋转角即roll,β为绕y轴旋转角即pitch,γ为绕z轴旋转角即yaw。a,b,c,dq0,q1,q2,q3.

void IMU_Update(void)
{
	static float q[4];
	float Values[6];	
	Get_IMU_Values(Values);	
	
	//change angle to radian,the calculate the imu with Mahony
	MahonyAHRSupdateIMU(Values[0] * PI/180, Values[1] * PI/180, Values[2] * PI/180,
 	                    Values[3], Values[4], Values[5]);		
	//save Quaternion
	q[0] = q0;
	q[1] = q1;
	q[2] = q2;
	q[3] = q3;
    
	imu.ax = Values[3];
	imu.ay = Values[4];
	imu.az = Values[5];
    
	imu.Pitch_v = Values[0];
	imu.Roll_v = Values[1];
	imu.Yaw_v = Values[2];

	//calculate the imu angle with quaternion
	imu.Roll = (atan2(2.0f*(q[0]*q[1] + q[2]*q[3]),1 - 2.0f*(q[1]*q[1] + q[2]*q[2])))* 180/PI;	
	imu.Pitch = -safe_asin(2.0f*(q[0]*q[2] - q[1]*q[3]))* 180/PI;
	imu.Yaw = -atan2(2 * q1 * q2 + 2 * q0 * q3, -2 * q2*q2 - 2 * q3 * q3 + 1)* 180/PI;
}

代码中MahonyAHRSupdateIMU()函数实现的就是四元数的更新算法。

逻辑上,首先用加速度计校准陀螺仪,方式是通过计算当前四元数姿态下的重力分量,与加速度计的重力分量作叉积,得到误差。
对误差作P(比例)和I(积分)运算后加到陀螺仪角速度上。最终由角速度计算新的四元数。

代码中的 sampleFreq 即执行姿态解算的频率,这里用定时器,以500HZ的频率调用get_angle();

void MahonyAHRSupdateIMU(float gx, float gy, float gz, float ax, float ay, float az) {
	float recipNorm;	
	float halfvx, halfvy, halfvz;	//1/2 重力分量
	float halfex, halfey, halfez;	//1/2 重力误差
	float qa, qb, qc;
	//对加速度数据归一化
	recipNorm = invSqrt(ax * ax + ay * ay + az * az);
	ax *= recipNorm;
	ay *= recipNorm;
	az *= recipNorm;

	// 由四元数计算重力分量
	halfvx = q1 * q3 - q0 * q2;
	halfvy = q0 * q1 + q2 * q3;
	halfvz = q0 * q0 - 0.5f + q3 * q3;

	// 将四元数重力分量 与 加速度计重力分量 作叉积 得到误差
	halfex = (ay * halfvz - az * halfvy);
	halfey = (az * halfvx - ax * halfvz);
	halfez = (ax * halfvy - ay * halfvx);

	//对误差作积分
	integralFBx += twoKi * halfex * (1.0f / sampleFreq);	
	integralFBy += twoKi * halfey * (1.0f / sampleFreq);
	integralFBz += twoKi * halfez * (1.0f / sampleFreq);
	//反馈到角速度
	gx += integralFBx;	     gy += integralFBy;       gz += integralFBz;

	// 对误差作比例运算并反馈
	gx += twoKp * halfex;    gy += twoKp * halfey;    gz += twoKp * halfez;

	// 计算1/2 dt
	gx *= (0.5f * (1.0f / sampleFreq));		
	gy *= (0.5f * (1.0f / sampleFreq));
	gz *= (0.5f * (1.0f / sampleFreq));
	qa = q0;     qb = q1;      qc = q2;
	// 更新四元数
	q0 += (-qb * gx - qc * gy - q3 * gz);
	q1 += (qa * gx + qc * gz - q3 * gy);
	q2 += (qa * gy - qb * gz + q3 * gx);
	q3 += (qa * gz + qb * gy - qc * gx);

	// 四元数归一化
	recipNorm = invSqrt(q0 * q0 + q1 * q1 + q2 * q2 + q3 * q3);
	q0 *= recipNorm;     q1 *= recipNorm;     q2 *= recipNorm;     q3 *= recipNorm;
}

由于加速度计对水平方向的旋转无能为力,故用此程序得到的yaw角数据会一直漂移,无法得到校准;通常的解决方法是增加一个磁场传感器,来获得一个准确的水平方向角来校准陀螺仪的漂移。MPU6050支持扩展一个IIC接口到磁场传感器,可通过配置MPU6050IIC MASTER 来读取磁场传感器的数据。

Mahony中提供了包含磁场数据的融合函数:

> void MahonyAHRSupdate(float gx, float gy, float gz, float ax, float ay, float az, 
>                       float mx, float my, float mz);

3. 程序逻辑

首先看main函数:

int main(void)
{
	All_HardWare_init();
	while (1)
	{
		Protect_Check();
		LED_show_working();
		LCD_show_Brief_info();
	}
}

代码都封装在了函数里,因此主控的main函数非常简单。All_HardWare_init();包含了所有硬件、片内资源的初始化。因为Mahony每次上电融合解算姿态时需要几秒的自我校准,因此先打开定时器。

	TIM3_Int_Init(99, 7199); // 72M ÷7200 ÷100 = 10 ms

几秒过后再初始化PID控制器

	PID_init();              //直立环,速度环PID控制器初始化

定时器3中断服务函数control.c文件中,包含姿态解算和PID控制。

void TIM3_IRQHandler(void)
{
  if (TIM_GetITStatus(TIM3, TIM_IT_Update) == SET) 
  {   TIM_ClearITPendingBit(TIM3, TIM_IT_Update);             
     /**
      *PID控制与姿态解算部分,详情请TP至
      *....../主控程序/HARDWARE/control/control.c
      *
      */
  }
}

死循环中目前三个函数分别是LED、LCD状态显示和 一个简易的过倾保护。

void Protect_Check(void)
{
	if (imu.Roll > 30 || imu.Roll < -30)
		Protect = 1;
	else
		Protect = 0;
}

4. 补充

还在更新,会做出更多的功能

评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值