Problem C: 斐波那契数列
Time Limit: 1000 ms Memory Limit: 128 MB
Description
通过小L的不懈努力,他即将成为大神啦,他登上了大神专属的颁奖台。在颁奖台上,他即将领取代表着大神的无限荣誉的勋章。小L走上颁奖台后,在台上发现了一个制作精美的盒子。荣誉勋章就在盒子里面。小L发现这个盒子被上了锁,在这个盒子上有一套题,他知道想要拿到荣誉勋章,就必须完成这道题。小L开始研究起这道题。
Input
第一行读入两个正整数N,K,表示该题为f(n)=f(n-1)+f(n-2)+…+f(n-k),求f(N)的值。f(1)=f(2)=...=f(k-1)=f(k)=1。
Output
输出一个正整数,表示f(N)%1000000007的值。
Sample Input
5 2
Sample Output
5
HINT
数据范围
对于30%的数据,有0<N≤100000,1<K≤50;
对于100%的数据,有0<N≤1015,1<K≤50。
非常经典的矩阵快速幂的题目
我们可以发现就只要两个元素及可建立矩阵方程
及
f(i+1) X 1 1 = f(i+2)
f(i) 1 0 f(i+1)
下面是codeeeeeeeeeeeeeeeeeeeee(不解释)
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
#define tt 1000000007
#define ll long long
using namespace std;
ll f[4][4],ff[4][4];
ll t,n;
void mlti(ll a[4][4],ll b[4][4],ll ans[4][4])
{ll temp[4][4];
for(int i=1;i<=3;i++)
for(int j=1;j<=3;j++)
{temp[i][j]=0;
for(int k=1;k<=3;k++)
temp[i][j]=(temp[i][j]+a[i][k]*b[k][j])%tt;
}
for(int i=1;i<=3;i++)
for(int j=1;j<=3;j++)
ans[i][j]=temp[i][j];
}
int main()
{
scanf("%lld",&t);
for(int i=1;i<=t;i++)
{memset(f,0,sizeof(f));
memset(ff,0,sizeof(ff));
f[1][1]=f[2][1]=f[3][1]=1;
ff[1][1]=ff[1][3]=ff[2][1]=ff[3][2]=1;
scanf("%lld",&n);
n-=3;
while(n>0){
if(n&1) mlti(ff,f,f);
mlti(ff,ff,ff);
n>>=1;
}
cout<<(f[1][1])%tt<<endl;
}
return 0;
}