矩阵快速幂 斐波那契数列


Problem C: 斐波那契数列

Time Limit: 1000 ms   Memory Limit: 128 MB

Description

通过小L的不懈努力,他即将成为大神啦,他登上了大神专属的颁奖台。在颁奖台上,他即将领取代表着大神的无限荣誉的勋章。小L走上颁奖台后,在台上发现了一个制作精美的盒子。荣誉勋章就在盒子里面。小L发现这个盒子被上了锁,在这个盒子上有一套题,他知道想要拿到荣誉勋章,就必须完成这道题。小L开始研究起这道题。

Input

第一行读入两个正整数N,K,表示该题为f(n)=f(n-1)+f(n-2)+…+f(n-k),求f(N)的值。f(1)=f(2)=...=f(k-1)=f(k)=1。

Output

输出一个正整数,表示f(N)%1000000007的值。

Sample Input

5 2

Sample Output

5

HINT

 

数据范围

对于30%的数据,有0<N≤100000,1<K≤50;

对于100%的数据,有0<N≤1015,1<K≤50。

 

非常经典的矩阵快速幂的题目

我们可以发现就只要两个元素及可建立矩阵方程

    f(i+1)      X       1 1        =        f(i+2)

    f(i)                    1 0                   f(i+1)

下面是codeeeeeeeeeeeeeeeeeeeee(不解释)

#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
#define tt 1000000007
#define ll long long
using namespace std;
ll f[4][4],ff[4][4];
ll  t,n;
void mlti(ll a[4][4],ll b[4][4],ll ans[4][4])
{ll temp[4][4];
    for(int i=1;i<=3;i++)
    for(int j=1;j<=3;j++)
    {temp[i][j]=0;
        for(int k=1;k<=3;k++)
        temp[i][j]=(temp[i][j]+a[i][k]*b[k][j])%tt;
    }
    for(int i=1;i<=3;i++)
    for(int j=1;j<=3;j++)
      ans[i][j]=temp[i][j];
}
int main()
{ 
    scanf("%lld",&t);
    for(int i=1;i<=t;i++)
    {memset(f,0,sizeof(f));
      memset(ff,0,sizeof(ff));
     f[1][1]=f[2][1]=f[3][1]=1;
     ff[1][1]=ff[1][3]=ff[2][1]=ff[3][2]=1;
    scanf("%lld",&n);
        n-=3;
        while(n>0){
            if(n&1) mlti(ff,f,f);
            mlti(ff,ff,ff);
            n>>=1;
         }
        cout<<(f[1][1])%tt<<endl;
     } 
     return 0;
 }
    

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值