【matplotlib一篇就够了】

案例一

代码

import matplotlib.pyplot as plt
import random

#  创建画布
plt.figure(figsize=(20,8), dpi=100)

# 生成数据
x = range(60)
y_beijing = [random.uniform(10, 15) for i in x]
y_shanghai = [random.uniform(15, 25) for i in x]

#  图形绘制
plt.plot(x, y_beijing, label="北京", color="g", linestyle="-.")
plt.plot(x, y_shanghai, label="上海")

# 添加刻度, 就是Y轴显示的内容,如果不添加刻度,默认会按y数据内容范围来显示
y_ticks = range(40)
plt.yticks(y_ticks[::5])

x_ticks_labels = ["11点{}分".format(i) for i in x]
plt.xticks(x[::5], x_ticks_labels[::5])

# 设置字体环境, 这样就可以显示汉字
plt.rcParams["font.sans-serif"] = ['simHei']

# 设置显示网络, 参数1 是否开启,参数2 -为直线 --为虚线, 参数3为透明度
plt.grid(True, linestyle="-", alpha=0.5)

# 添加描述
plt.xlabel("时间")
plt.ylabel("温度")
plt.title("一小时间温度变化图", fontsize=20)

# 显示图例, 提前是需要在显示之前添加图标名称,第13行和14行label
# loc参数默认为0在右上角显示,其它参数会显示在不同的地方
plt.legend(loc=3)
plt.show()

效果展示

在这里插入图片描述

案例二

代码

import matplotlib.pyplot as plt
import random

#  创建画布
plt.figure(figsize=(20,8), dpi=100)

# 生成数据
x = range(60)
y_beijing = [random.uniform(10, 15) for i in x]
y_shanghai = [random.uniform(15, 25) for i in x]

#  图形绘制
fig, axes = plt.subplots(nrows=1, ncols=2, figsize=(20, 5), dpi=100)
axes[0].plot(x, y_beijing, label="北京", color="g", linestyle="-.")
axes[1].plot(x, y_shanghai, label="上海")

# 添加刻度
y_ticks = range(40)
x_ticks_labels = ["11点{}分".format(i) for i in x]

axes[0].set_xticks(x[::5])
axes[0].set_yticks(y_ticks[::5])
axes[0].set_xticklabels(x_ticks_labels[::5])
axes[1].set_xticks(x[::5])
axes[1].set_yticks(y_ticks[::5])
axes[1].set_xticklabels(x_ticks_labels[::5])

# 添加网络
axes[0].grid(True, linestyle="-", alpha=0.5)
axes[1].grid(True, linestyle="-", alpha=0.5)

# 添加描述
axes[0].set_xlabel("时间")
axes[0].set_ylabel("温度")
axes[0].set_title("北京一小时间温度变化图", fontsize=20)
axes[1].set_xlabel("时间")
axes[1].set_ylabel("温度")
axes[1].set_title("上海一小时间温度变化图", fontsize=20)

# 设置字体环境, 这样就可以显示汉字
plt.rcParams["font.sans-serif"] = ['simHei']

# 显示图例
axes[0].legend()
axes[1].legend()

plt.show()

效果展示

在这里插入图片描述

案例三

代码

import numpy as np
import matplotlib.pyplot as plt

# 准备数据
x = np.linspace(-10, 10, 1000)
y = np.sin(x)

# 创建画布
plt.figure(figsize=(20, 8), dpi=100)

# 绘制
plt.plot(x, y)

plt.grid()

plt.show()

效果展示

在这里插入图片描述

其它图形

1.折线图–plt.plot()
2.散点图–plt.scatter()
3.柱状图–plt.bar()
4.直方图–plt.hist()
5.饼图–plt.pie()

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值