tf.layers.batch_normalization使用中遇到的坑

tf.layers.batch_normalization()的坑

特指TensorFlow 1

简单的使用方法:直接使用tf.layers.batch_normalization(input, is_training)

input: 需要进行BN的输入(一般在激活前使用BN)
is_training: 一般是在训练阶段设置为True,测试阶段设置为False


坑:
在使用了batch_normalization后,需要添加代码:

update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS)  # 添加的代码
with tf.control_dependencies(update_ops):  # 添加的代码
	attack_op = attack_optimizer.minimize(loss)

否则训练时的均值和方差就不会被保存,在测试阶段的误差会出现异常。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值