离散数学——图论

一、图
  图作为数学模型,是一种用于描述有穷系统的二元关系 ( V , R ) (V, R) (V,R),图的二元关系使得图的集合产生了结构。

1.1 图
  设有穷集合 V V V,取集合 P 2 ( V ) = { ( u , v ) ∣ u , v ∈ V } \mathcal{P}_2(V) = \{(u, v)|u, v \in V\} P2(V)={(u,v)u,vV} E ⊆ P 2 ( V ) E \subseteq \mathcal{P}_2(V) EP2(V),则称二元组 ( V , E ) (V, E) (V,E)无向图
  对于图 G = ( V , E ) G = (V, E) G=(V,E) V V V称为顶点集 E E E称为边集 ∀ ( u , v ) ∈ E \forall (u, v) \in E (u,v)E,称 u u u v v v邻接,且 ( u , v ) (u, v) (u,v) u u u v v v关联
  对于图 G = ( V , E ) G = (V, E) G=(V,E) ∣ V ∣ = p |V| = p V=p是顶点数, ∣ E ∣ = q |E| = q E=q是边数,则称 G G G是一个 ( p , q ) (p, q) (p,q)图。 ( 1 , 0 ) (1, 0) (1,0)图也称为平凡图 ( p , 0 ) (p, 0) (p,0)图也称为零图
  设有穷集合 V V V,取集合 P 2 ( V ) = V × V − { ( v , v ) ∣ v ∈ V } \mathcal{P}_2(V) = V \times V - \{(v, v)|v \in V\} P2(V)=V×V{(v,v)vV} A ⊆ P 2 ( V ) A \subseteq \mathcal{P}_2(V) AP2(V),则称二元组 ( V , A ) (V, A) (V,A)有向图

  设图 G = ( V , E ) G = (V, E) G=(V,E),令 V s ⊆ V V_s \subseteq V VsV E s ⊆ E ∩ P 2 ( V s ) E_s \subseteq E \cap \mathcal{P}_2(V_s) EsEP2(Vs),称图 G s = ( V s , E s ) G_s = (V_s, E_s) Gs=(Vs,Es)为图 G G G子图。若 G G G的子图 G s G_s Gs包含了 G G G的全部顶点,称该子图为生成子图,记为 G ′ = ( V , E ′ ) G' = (V, E') G=(V,E)

  设图 G = ( V , E ) G = (V, E) G=(V,E) ∀ v ∈ V \forall v \in V vV,与 v v v关联的边数称为 v v v,记为 d e g   v deg\ v deg v,并记 δ ( G ) = m i n ∀ v ∈ V { d e g   v } Δ ( G ) = m a x ∀ v ∈ V { d e g   v } \delta(G) = min_{\forall v \in V }\{deg\ v\} \\ \Delta(G) = max_{\forall v \in V }\{deg\ v\} δ(G)=minvV{deg v}Δ(G)=maxvV{deg v}且对于 ( p , q ) (p, q) (p,q) G G G,有 ∑ v ∈ V d e g   v = 2 q \sum_{v \in V} deg\ v = 2q vVdeg v=2q,称为握手定理。其可以推论出生活中的一个现象:握过奇数次手的人有偶数个。
  设图 G = ( V , E ) G = (V, E) G=(V,E),若 ∀ v ∈ V \forall v \in V vV,都有 d e g   v = r deg\ v = r deg v=r,则称 G G Gr-正则图。对于 ( p , q ) (p, q) (p,q)图,其(p-1)-正则图称为完全图,记作 K p K_p Kp

  设图 G = ( V , E ) , H = ( U , F ) G = (V, E), H = (U, F) G=(V,E),H=(U,F),有 ∣ V ∣ = ∣ U ∣ |V| = |U| V=U,若 ∃ ϕ : V → U \exists \phi: V \rightarrow U ϕ:VU是双射的,且 ( v 1 , v 2 ) ∈ E (v_1, v_2) \in E (v1,v2)E,有 ( ϕ ( v 1 ) , ϕ ( v 2 ) ) ∈ F (\phi(v_1), \phi(v_2)) \in F (ϕ(v1),ϕ(v2))F,则称图 G G G H H H同构的,记为 G ≅ H G \cong H GH。直观的,对图的顶点进行置换,即可得到其同构图。

  设图 G = ( V , E ) G = (V, E) G=(V,E),那么 G G G补图 G c = ( V , E c ) G^c = (V, E^c) Gc=(V,Ec),其中 E c = P 2 ( V ) − E E^c = \mathcal{P}_2(V) - E Ec=P2(V)E。对于同构的图 G G G H H H,其补图 G c G^c Gc H c H^c Hc也同构。若图 G G G与其补图 G c G^c Gc同构,则称 G G G自同构图

1.2 连通图
  非形式化的说,设图 G = ( V , E ) G = (V, E) G=(V,E),顶点与边的交错序列称为通道。沿着通道可以访问顶点,即边的端点。若通道的起始顶点也是结束顶点,则称为闭通道
  若 G G G的通道没有重复的边,称为一条;若没有重复的顶点,称为一条。闭通道的迹称为闭迹,而闭通道的路称为闭路,也称为
  设图 G = ( V , E ) G = (V, E) G=(V,E) ∀ u , v ∈ V \forall u, v \in V u,vV,都存在 u u u v v v之间的路,称 G G G连通图

  设 ( p , q ) (p, q) (p,q) G = ( V , E ) G = (V, E) G=(V,E),若 ( u , v ) ∉ E (u, v) \notin E (u,v)/E,且 d e g   u + d e g   v ≥ p − 1 deg\ u +deg\ v \ge p - 1 deg u+deg vp1,那么 G G G连通。
  考察该定理, u u u v v v之间有路是是自反的、对称的、传递的,即是一个等价关系,根据该等价关系可以得到一个划分,对于一个等价类的所有顶点,可以得到一个导出子图,令其顶点为 V i V_i Vi,取 E i = P 2 ( V i ) ∩ E E_i = \mathcal{P}_2(V_i) \cap E Ei=P2(Vi)E,称 G i = ( V i , E i ) G_i = (V_i, E_i) Gi=(Vi,Ei)极大连通子图,也称为
  若 d e g   u + d e g   v ≥ p − 1 deg\ u +deg\ v \ge p - 1 deg u+deg vp1的情况下, G G G不是一个连通子图,那么 G G G至少有2个支。记为 G 1 = ( V 1 , E 1 ) G_1 = (V_1, E_1) G1=(V1,E1) G 2 = ( V 2 , E 2 ) G_2= (V_2, E_2) G2=(V2,E2),令 ∣ V 1 ∣ = n , ∣ V 2 ∣ = p − n |V_1| = n, |V_2| = p - n V1=n,V2=pn ∀ u , v ∈ V \forall u, v \in V u,vV,若 u ∈ V 1 u \in V_1 uV1,那么 d e g   u ≤ n − 1 deg\ u \le n - 1 deg un1 v ∈ V 2 v \in V_2 vV2,那么 d e g   v ≤ p − n − 1 deg\ v \le p - n - 1 deg vpn1那么有 d e g   u + d e g   v ≤ p − 2 deg\ u +deg\ v \le p - 2 deg u+deg vp2与条件矛盾。

  设图 G = ( V , E ) G = (V, E) G=(V,E),若 ∃ v ∈ V \exists v \in V vV d e g   v > 0 deg\ v > 0 deg v>0 ∀ v ∈ V \forall v \in V vV d e g   v   m o d   2 = 0 deg\ v\ mod\ 2 = 0 deg v mod 2=0,则 G G G中有圈。
  考察该定理,考虑 G G G中最长的路 v 1 v 2 . . v n v_1v_2..v_n v1v2..vn,由于 d e g   v 1 deg\ v_1 deg v1是偶数,则除了 ( v 1 , v 2 ) ∈ E (v_1, v_2) \in E (v1,v2)E ∃ v i , 3 ≤ i ≤ n , ( v 1 , v i ) ∈ E \exists v_i, 3 \le i \le n, (v_1, v_i) \in E vi,3in,(v1,vi)E即有闭路 v 1 v 2 . . . v i v 1 v_1v_2...v_iv_1 v1v2...viv1,即存在圈。且由此易知对于 δ ( G ) ≥ m ≥ 2 \delta(G) \ge m \ge 2 δ(G)m2,则存在长至少为 m + 1 m+1 m+1的圈。

1.3 双图
  设图 G = ( V , E ) G = (V, E) G=(V,E),若存在 V V V的二划分 { V 1 , V 2 } \{V_1, V_2\} {V1,V2},使得 ∀ ( u , v ) ∈ E \forall (u, v) \in E (u,v)E,都有 u ∈ V 1 , v ∈ V 2 u \in V_1, v \in V_2 uV1,vV2 u ∈ V 2 , v ∈ V 1 u \in V_2, v \in V_1 uV2,vV1,则称图 G G G是一个双图
  若图 G = ( V , E ) G = (V, E) G=(V,E)是一个双图,且是一个完全图,则称 G G G是一个完全双图,对于 ∣ V 1 ∣ = m , ∣ V 2 ∣ = n |V_1|=m, |V_2|=n V1=m,V2=n,记完全双图为 K m , n K_{m, n} Km,n

  设图 G = ( V , E ) G = (V, E) G=(V,E),那么 G G G是双图的充要条件为 G G G中圈的长度为偶数。
  考察该定理的必要性,若图 G = ( V , E ) G = (V, E) G=(V,E)是双图,则有划分 V = { V 1 , V 2 } V = \{V_1, V_2\} V={V1,V2},并考虑任意圈 v 1 v 2 v 3 . . . v n v 1 v_1v_2v_3...v_nv_1 v1v2v3...vnv1,由于 G G G是双图,故必有 v 1 , v 3 , v 5 , . . . v_1, v_3, v_5, ... v1,v3,v5,...位于同一划分,而 v 2 , v 4 , v 6 , . . . v_2, v_4, v_6, ... v2,v4,v6,...位于另一划分,故 n n n必为偶数。
  再考察该定理的充分性,考虑 v ∈ V v \in V vV,构造集合 V 1 , V 2 V_1, V_2 V1,V2,使得 v ∈ V 1 v \in V_1 vV1。设 u u u v v v的距离为 d ( u , v ) d(u, v) d(u,v),那么令 V 1 = { u ∣ d ( u , v )   m o d   2 = 0 } V_1 = \{u|d(u, v)\ mod\ 2 = 0\} V1={ud(u,v) mod 2=0} V 2 = V − V 1 V_2 = V - V_1 V2=VV1。考察 V 1 V_1 V1,若 ∃ u , w ∈ V 1 , ( u , w ) ∈ E \exists u, w \in V_1, (u, w) \in E u,wV1,(u,w)E,那么有 d ( u , v )   m o d   2 = 0 d ( w , v )   m o d   2 = 0 d ( u , w ) = 1 d(u, v)\ mod\ 2 = 0 \\ d(w, v)\ mod\ 2 = 0 \\ d(u, w) = 1 d(u,v) mod 2=0d(w,v) mod 2=0d(u,w)=1此时 u , v , w u, v, w u,v,w构成圈,且长度为奇数,与条件矛盾。故 V 1 , V 2 V_1, V_2 V1,V2构成了二划分,使得 G G G是双图。

  设 ( p , q ) (p, q) (p,q) G = ( V , E ) G = (V, E) G=(V,E),若 G G G中不存在长度为3的圈,则 q ≤ ⌊ p 2 / 4 ⌋ q \le \lfloor p^2/4 \rfloor qp2/4,称为图兰【Turán】定理
  考察该定理,假设成立并归纳:
  1.显然, p = 1 , 2 p = 1, 2 p=1,2,定理成立;
  2.设 p = 2 N + 1 p = 2N + 1 p=2N+1 ∀ ( u , v ) ∈ E \forall (u, v) \in E (u,v)E G − u − v = G ′ G - u - v = G' Guv=G,那么 G ′ G' G是一个 ( 2 N − 1 , q ′ ) (2N - 1, q') (2N1,q)图,那么根据定理,有 q ′ ≤ ⌊ p ′ 2 / 4 ⌋ = ⌊ ( 2 N − 1 ) 2 / 4 ⌋ = N 2 − N q' \le \lfloor p'^2/4 \rfloor = \lfloor (2N-1)^2/4 \rfloor = N^2 - N qp2/4=(2N1)2/4=N2N考察 G G G G ′ G' G的边数的关系,由于不存在边数为3的圈的约束,有 d e g   u + d e g   v ≤ p deg\ u + deg\ v \le p deg u+deg vp,故 q ≤ q ′ + p − 1 = q ′ + 2 N ≤ N 2 + N = ⌊ ( 2 N + 1 ) 2 / 4 ⌋ q \le q' + p - 1 = q' + 2N \le N^2 + N = \lfloor (2N+1)^2/4 \rfloor qq+p1=q+2NN2+N=(2N+1)2/4得证;
  3.设 p = 2 N p = 2N p=2N ∀ ( u , v ) ∈ E \forall (u, v) \in E (u,v)E G − u − v = G ′ G - u - v = G' Guv=G,那么 G ′ G' G是一个 ( 2 N − 2 , q ′ ) (2N - 2, q') (2N2,q)图,那么根据定理,有 q ′ ≤ ⌊ p ′ 2 / 4 ⌋ = ⌊ ( 2 N − 2 ) 2 / 4 ⌋ = N 2 − 2 N + 1 q' \le \lfloor p'^2/4 \rfloor = \lfloor (2N-2)^2/4 \rfloor = N^2 - 2N + 1 qp2/4=(2N2)2/4=N22N+1考察 G G G G ′ G' G的边数的关系,由于不存在边数为3的圈的约束,有 d e g   u + d e g   v ≤ p deg\ u + deg\ v \le p deg u+deg vp,故 q ≤ q ′ + p − 1 = q ′ + 2 N − 1 ≤ N 2 = ⌊ ( 2 N ) 2 / 4 ⌋ q \le q' + p - 1 = q' + 2N -1 \le N^2 = \lfloor (2N)^2/4 \rfloor qq+p1=q+2N1N2=(2N)2/4得证。

1.4 欧拉图
  设图 G = ( V , E ) G = (V, E) G=(V,E),包含 G G G的所有迹的所有顶点与所有边的迹称为欧拉迹,当欧拉迹为闭迹时,称为欧拉闭迹。包含欧拉闭迹的图称为欧拉图

   G G G是欧拉图的充要条件是: G G G是连通的且每个顶点的度为偶数,称为欧拉【Euler】定理
  考察必要性, G G G是欧拉图,则 G G G包含欧拉闭迹,即连通的,且显然,形成闭迹时,顶点的度均为偶数。
  再考察充分性, G G G是连通的且每个顶点的度为偶数,那么 G G G具有圈 C 1 C_1 C1,若 C 1 C_1 C1是一条欧拉闭迹,则得证;否则去除圈 C 1 C_1 C1,得到的图的顶点的度也是偶数,且也是连通的,具有圈 C 2 C_2 C2,直到 C k C_k Ck,且若干个圈没有公共边,从而形成了欧拉闭迹。

  若图是自反的,则称为带环图,直观的,图的顶点与自己邻接;若图的关系有多个等价类,则称为多重图,直观的,图的顶点之间有多重邻接。带环图与多重图统称为伪图,欧拉定理对于伪图也成立。
  设图 G = ( V , E ) G = (V, E) G=(V,E),图 G G G中有一条欧拉开迹的充要条件为:如果 G G G中有2个奇度顶点。
  若 G G G有2n个奇度顶点,那么 G G G至少有n条迹。

1.5 哈密顿图
  设图 G = ( V , E ) G = (V, E) G=(V,E),如果 G G G中有生成圈,则称 G G G哈密顿图

   G = ( V , E ) G = (V, E) G=(V,E)是哈密顿图的必要条件是:对于 S ⊆ V S \subseteq V SV,取 w ( G − S ) w(G - S) w(GS)表示去除 S S S后形成的图的支的个数,那么 w ( G − S ) ≤ ∣ S ∣ w(G - S) \le |S| w(GS)S

   ( p , q ) (p, q) (p,q) G = ( V , E ) G = (V, E) G=(V,E)是哈密顿图的充分条件是: p > 3 p > 3 p>3 ∀ v ∈ V \forall v \in V vV d e g   v ≥ p / 2 deg\ v \ge p/2 deg vp/2。其称为狄拉克【Dirac】定理
  考察其逆否命题,若 G G G不是哈密顿图,那么其也一定不是 K p K_p Kp,即存在 u , v ∈ V u, v \in V u,vV不邻接,设在 G G G中加入 ( u , v ) (u, v) (u,v),直到 G ∗ G^* G是哈密顿图,从中去除最后加入的边,得到的 G ′ G' G必存在哈密顿路。设 G ′ G' G的哈密顿路的首个顶点 v v v与顶点 v i 1 , . . . , v i k v_{i1}, ..., v_{ik} vi1,...,vik邻接,那么末尾顶点 v p v_p vp不能与 v i j − 1 v_{ij-1} vij1邻接,否则形成 v 1 v i k v i k + 1 . . . v p v i k − 1 v i k − 2 . . . v 1 v_1v_{ik}v_{ik+1}...v_pv_{ik-1}v_{ik-2}...v_1 v1vikvik+1...vpvik1vik2...v1的哈密顿圈。由于 d e g   v 1 = k deg\ v_1 = k deg v1=k,那么 d e g   v p ≤ p − 1 − k deg\ v_p \le p-1-k deg vpp1k。故有 d e g   v 1 + d e g   v p ≤ p − 1 deg\ v_1 + deg\ v_p \le p - 1 deg v1+deg vpp1 v 1 v_1 v1 v p v_p vp的度小于 p / 2 p/2 p/2。即得到命题:若 G G G不是哈密顿图,那么 ∃ v ∈ V \exists v \in V vV d e g v < p / 2 deg v < p/2 degv<p/2,其逆否命题即为狄拉克定理。
  上述证明也可以得出,对于 ( p , q ) (p, q) (p,q) G = ( V , E ) G = (V, E) G=(V,E),若 ∀ u , v ∈ V \forall u, v \in V u,vV ( u , v ) ∉ E (u, v) \notin E (u,v)/E,若 d e g   u + d e g   v ≥ p deg\ u + deg\ v \ge p deg u+deg vp,则 G G G是哈密顿图,称为奥尔【Ore】定理
  推广的,对于 ( p , q ) (p, q) (p,q) G = ( V , E ) G = (V, E) G=(V,E),若 ∀ u , v ∈ V \forall u, v \in V u,vV ( u , v ) ∉ E (u, v) \notin E (u,v)/E,若 d e g   u + d e g   v ≥ p − 1 deg\ u + deg\ v \ge p-1 deg u+deg vp1,则 G G G包含一个哈密顿路。

1.6 图的表示
  图可以直观的采用图解表示。考虑图 G = ( V , E ) G = (V, E) G=(V,E),其中 V = { v 1 , v 2 , v 3 , v 4 } V = \{v_1, v_2, v_3, v_4\} V={v1,v2,v3,v4} E = { ( v 1 , v 2 ) , ( v 2 , v 3 ) , ( v 3 , v 4 ) } E = \{(v_1, v_2), (v_2, v_3), (v_3, v_4)\} E={(v1,v2),(v2,v3),(v3,v4)},那么其图为
G
当图的顶点或边有代价时,就形成了带权图,即 G = ( V , E , f , g ) G = (V, E, f, g) G=(V,E,f,g),其中 f : V → R , g → R f:V \rightarrow R, g \rightarrow R f:VR,gR。带权图具有典型的最短路径等问题,详见数据结构——图

  图也可以使用邻接矩阵表示,其为 ( 0 1 0 0 1 0 1 0 0 1 0 1 0 0 1 0 ) \left( \begin{matrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1\\ 0 & 0 & 1 & 0 \\ \end{matrix} \right ) 0100101001010010邻接矩阵有如下定理:对于图 G = ( V , E ) G = (V, E) G=(V,E)及其邻接矩阵 B \bm{B} B,那么从顶点 v i v_i vi v j v_j vj的长为 l l l的通道共有 ( B l ) i j (\bm{B}^l)_{ij} (Bl)ij条。

  在计算机中,稀疏的大型邻接矩阵将浪费大量存储空间,使用指针将分散的内存组织成结构,形成邻接表。上述图的邻接表为
G
  此外,通过顶点与边的关系,可以构造关联矩阵,上述图的关联矩阵为 ( 1 0 0 1 1 0 0 1 1 0 0 1 ) \left( \begin{matrix} 1 & 0 & 0\\ 1 & 1 & 0\\ 0 & 1 & 1\\ 0 & 0 & 1\\ \end{matrix} \right ) 110001100011
其中一维表示边,二维表示顶点。


二、树
  树是一种数据结构,作为图的一种,其在计算机科学中,尤其是算法中有着重要的作用。

2.1 树
  一个连通的、无圈的图称为,树中度为1的顶点称为。相似的,一个不连通的、无圈的图称为森林。仅有一个顶点的树,称为平凡树,则非平凡树至少有2个叶。
  设 ( p , q ) (p, q) (p,q) G = ( V , E ) G = (V, E) G=(V,E),那么 G G G是树的等价命题包括:
  - G G G的任意两个顶点之间存在唯一的路;
  - G G G是连通的,且有 p = q + 1 p = q + 1 p=q+1
  - G G G是无圈的,且在 G G G的任意两个不邻接的顶点之间增加一条边,可以得到有唯一圈的图。
  设图 G = ( V , E ) G = (V, E) G=(V,E),若 ∀ e ∈ E \forall e \in E eE,有 G − e G - e Ge不连通,那么称 G G G是一个极小连通图 G G G是树的充要条件为 G G G是极小连通图。

  设树 G = ( V , E ) G = (V, E) G=(V,E) ∀ v ∈ V \forall v \in V vV,定义 v v v偏心率用于描述了该顶点与其他所有顶点的距离的度量,记作 e ( v ) = m a x u ∈ V { d ( u , v ) } e(v) = max_{u \in V}\{d(u, v)\} e(v)=maxuV{d(u,v)},并定义树 G G G半径 r ( G ) = m i n v ∈ V { e ( v ) } r(G) = min_{v \in V}\{e(v)\} r(G)=minvV{e(v)}。那么树 G G G中心是一个集合 H ⊆ V H \subseteq V HV,有 H = { v ∣ v ∈ V , e ( v ) = r ( G ) } H = \{v|v \in V, e(v) = r(G)\} H={vvV,e(v)=r(G)}

2.2 生成树
  设图 G = ( V , E ) G = (V, E) G=(V,E) G G G的一个生成子图如果也是树,则称该生成子图为 G G G生成树
  设图 G = ( V , E ) G = (V, E) G=(V,E),则 G G G有生成树的充要条件为 G G G是连通的。

  设带权图 G = ( V , E , w ) G = (V, E, w) G=(V,E,w),其中 w : E → R + w:E \rightarrow R_+ w:ER+ T T T G G G的生成树,那么权和最小的生成树称为最小生成树。最小生成树的构造算法包括普里姆【Prim】算法克鲁斯卡尔【Kruskal】算法,详见数据结构——图

2.3 割集
  设图 G = ( V , E ) G = (V, E) G=(V,E) v ∈ V v \in V vV,若 G − v G-v Gv的支数大于 G G G的支数,那么 v v v G G G的一个割点
  设图 G = ( V , E ) G = (V, E) G=(V,E),那么 v v v是割点的等价命题包括:
  - ∃ u , w ∈ V \exists u, w \in V u,wV u ≠ w u \ne w u=w u u u w w w之间的所有路均通过 v v v
  -存在 V − { v } V - \{v\} V{v}的一个划分 { u , w } \{u, w\} {u,w},使得 ∀ u ∈ U , w ∈ W \forall u \in U, w \in W uU,wW u , w u, w u,w之间的所有路均通过 v v v

  设图 G = ( V , E ) G = (V, E) G=(V,E) e ∈ V e \in V eV,若 G − e G-e Ge的支数大于 G G G的支数,那么 e e e G G G的一个,桥的性质与割点相似:
  - ∃ u , w ∈ V \exists u, w \in V u,wV u ≠ w u \ne w u=w u u u w w w之间的所有路均通过 e e e
  -存在 V − { v } V - \{v\} V{v}的一个划分 { u , w } \{u, w\} {u,w},使得 ∀ u ∈ U , w ∈ W \forall u \in U, w \in W uU,wW u , w u, w u,w之间的所有路均通过 e e e


三、图的连通与匹配
  无论是计算机科学的网络,还是现实的工程问题,图模型的连通性在一定程度上反映了系统的容错性。

3.1 连通度
  设图 G = ( V , E ) G = (V, E) G=(V,E),若 ∃ v 1 , v 2 , . . . v n \exists v_1, v_2, ... v_n v1,v2,...vn,使得 G − ( v 1 + . . . + v n ) G - (v_1 + ... + v_n) G(v1+...+vn)是不连通图或平凡图,称所需去掉的最少顶点数为 G G G顶点连通度,简称为连通度,记作 K ( G ) K(G) K(G);所需去掉的最少边数,称为 G G G边连通度,记为 λ ( G ) \lambda(G) λ(G)。典型的,不连通图或平凡图 G G G,有 K ( G ) = λ ( G ) = 0 K(G) = \lambda(G) = 0 K(G)=λ(G)=0,而树 T T T K ( T ) = λ ( T ) = 1 K(T) = \lambda(T) = 1 K(T)=λ(T)=1
  最小度、顶点连通度、边连通度是一组构造工程系统的约束参数。

  设图 G = ( V , E ) G = (V, E) G=(V,E),那么有 K ( G ) ≤ λ ( G ) ≤ δ ( G ) K(G) \le \lambda(G) \le \delta(G) K(G)λ(G)δ(G)
  考察最小度与边连通度,若 G G G不连通,那么有 λ ( G ) = 0 ≤ δ ( G ) \lambda(G) = 0 \le \delta(G) λ(G)=0δ(G);若 G G G连通,则 ∃ v ∈ V \exists v \in V vV d e g   v = λ ( G ) deg\ v = \lambda(G) deg v=λ(G),对于与 v v v关联的 λ ( G ) \lambda(G) λ(G)条边 ∑ e \sum e e,有 G − ∑ e G - \sum e Ge不连通,即 λ ( G ) = δ ( G ) \lambda(G) = \delta(G) λ(G)=δ(G)。综上, λ ( G ) ≤ δ ( G ) \lambda(G) \le \delta(G) λ(G)δ(G)
  考察最小度与顶点连通度,若 G G G不连通或是平凡的,有 K ( G ) = λ ( G ) = 0 K(G) = \lambda(G) = 0 K(G)=λ(G)=0;若 G G G连通且非平凡的,如果 G G G有桥,那么 K ( G ) = 1 ≤ λ ( G ) K(G) = 1 \le \lambda(G) K(G)=1λ(G),而 G G G没有桥,则 ∃ v ∈ V \exists v \in V vV d e g   v = λ ( G ) deg\ v = \lambda(G) deg v=λ(G),对于与 v v v关联的 λ ( G ) \lambda(G) λ(G)条边与点 ∑ v + e \sum v+e v+e,有 G − ∑ ( v + e ) G - \sum (v+e) G(v+e)不连通,即 λ ( G ) = K ( G ) \lambda(G) = K(G) λ(G)=K(G)。综上, K ( G ) ≤ λ ( G ) K(G) \le \lambda(G) K(G)λ(G)

   ∀ k ≤ λ ≤ δ \forall k \le \lambda \le \delta kλδ,总存在 G G G,使得 K ( G ) = k , λ ( G ) = λ , δ ( G ) = δ K(G) = k , \lambda(G) = \lambda, \delta(G) = \delta K(G)=k,λ(G)=λ,δ(G)=δ

3.2 n-连通
  设图 G = ( V , E ) G = (V, E) G=(V,E),若 K ( G ) ≥ n K(G) \ge n K(G)n,则称 G G Gn-顶点连通,或简称为n-连通;若 λ ( G ) ≥ n \lambda(G) \ge n λ(G)n,则称 G G Gn-边连通。典型的,树是1-连通的。

  设图 G = ( V , E ) G = (V, E) G=(V,E) ∣ V ∣ ≥ 3 |V| \ge 3 V3 G G G是2-连通的充要条件为 ∀ u , v ∈ V \forall u, v \in V u,vV u , v u, v u,v都在 G G G的同一个圈上。
  考察该定理的充分性,若 G G G的任意两个顶点都在 G G G的同一个圈上,那么 G G G没有割点,即 K ( G ) ≥ 2 K(G) \ge 2 K(G)2,即2-连通;在考察必要性, K ( G ) ≥ 2 K(G) \ge 2 K(G)2,取 d ( u , v ) d(u, v) d(u,v),那么当 d ( u , v ) = 1 d(u, v) = 1 d(u,v)=1 K ( G ) ≥ 2 K(G) \ge 2 K(G)2,显然, u , v u, v u,v形成圈;设 d ( u , v ) = k d(u, v) = k d(u,v)=k d ( u , v ′ ) = k − 1 d(u, v') = k-1 d(u,v)=k1 u , v ′ u, v' u,v位于一个圈上,且 K ( G ) ≥ 2 K(G) \ge 2 K(G)2,那么 G − v ′ G-v' Gv中, u u u v v v之间有路,即在 G G G中, u u u v v v之间存在圈。

3.3 匹配问题
  设图 G = ( V , E ) G = (V, E) G=(V,E) I ⊆ V I \subseteq V IV ∀ u , v ∈ I \forall u, v \in I u,vI ( u , v ) ∉ E (u, v) \notin E (u,v)/E,称 I I I独立集 x , y ∈ E x, y \in E x,yE,若 x x x y y y没有共同端点,称 x x x y y y独立,若 S ⊆ E S \subseteq E SE ∀ x , y ∈ E \forall x, y \in E x,yE独立,称 S S S边独立集,也称为匹配
  设偶图 G = ( V 1 ∪ V 2 , E ) G = (V_1 \cup V_2, E) G=(V1V2,E),若有 G G G的匹配 S S S,使得 ∣ S ∣ = m i n { ∣ V 1 ∣ , ∣ V 2 ∣ } |S| = min\{|V_1|, |V_2|\} S=min{V1,V2},则称该匹配为完全匹配;若有 ∣ S ∣ = ∣ V 1 ∣ = ∣ V 2 ∣ |S| = |V_1| = |V_2| S=V1=V2,则称为完美匹配
  设图 G = ( V , E ) G = (V, E) G=(V,E) D ⊆ V D \subseteq V DV ∀ u , v ∈ D \forall u, v \in D u,vD ( u , v ) ∈ D (u, v) \in D (u,v)D,称 D D D

  设偶图 G = ( V 1 ∪ V 2 , E ) G = (V_1 \cup V_2, E) G=(V1V2,E) ∣ V 1 ∣ < ∣ V 2 ∣ |V_1|<|V_2| V1<V2,那么存在完全匹配 S S S的充要条件为: ∀ k , 1 ≤ k ≤ ∣ V 1 ∣ , ∑ i k d e g   v ≥ k , v ∈ V 1 \forall k, 1 \le k \le |V_1|, \sum_{i}^k deg\ v \ge k, v \in V_1 k,1kV1,ikdeg vk,vV1,称为霍尔【Hall】定理


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值