一、图
图作为数学模型,是一种用于描述有穷系统的二元关系
(
V
,
R
)
(V, R)
(V,R),图的二元关系使得图的集合产生了结构。
1.1 图
设有穷集合
V
V
V,取集合
P
2
(
V
)
=
{
(
u
,
v
)
∣
u
,
v
∈
V
}
\mathcal{P}_2(V) = \{(u, v)|u, v \in V\}
P2(V)={(u,v)∣u,v∈V},
E
⊆
P
2
(
V
)
E \subseteq \mathcal{P}_2(V)
E⊆P2(V),则称二元组
(
V
,
E
)
(V, E)
(V,E)为无向图。
对于图
G
=
(
V
,
E
)
G = (V, E)
G=(V,E),
V
V
V称为顶点集,
E
E
E称为边集。
∀
(
u
,
v
)
∈
E
\forall (u, v) \in E
∀(u,v)∈E,称
u
u
u与
v
v
v邻接,且
(
u
,
v
)
(u, v)
(u,v)与
u
u
u、
v
v
v关联。
对于图
G
=
(
V
,
E
)
G = (V, E)
G=(V,E),
∣
V
∣
=
p
|V| = p
∣V∣=p是顶点数,
∣
E
∣
=
q
|E| = q
∣E∣=q是边数,则称
G
G
G是一个
(
p
,
q
)
(p, q)
(p,q)图。
(
1
,
0
)
(1, 0)
(1,0)图也称为平凡图,
(
p
,
0
)
(p, 0)
(p,0)图也称为零图。
设有穷集合
V
V
V,取集合
P
2
(
V
)
=
V
×
V
−
{
(
v
,
v
)
∣
v
∈
V
}
\mathcal{P}_2(V) = V \times V - \{(v, v)|v \in V\}
P2(V)=V×V−{(v,v)∣v∈V},
A
⊆
P
2
(
V
)
A \subseteq \mathcal{P}_2(V)
A⊆P2(V),则称二元组
(
V
,
A
)
(V, A)
(V,A)为有向图。
设图 G = ( V , E ) G = (V, E) G=(V,E),令 V s ⊆ V V_s \subseteq V Vs⊆V, E s ⊆ E ∩ P 2 ( V s ) E_s \subseteq E \cap \mathcal{P}_2(V_s) Es⊆E∩P2(Vs),称图 G s = ( V s , E s ) G_s = (V_s, E_s) Gs=(Vs,Es)为图 G G G的子图。若 G G G的子图 G s G_s Gs包含了 G G G的全部顶点,称该子图为生成子图,记为 G ′ = ( V , E ′ ) G' = (V, E') G′=(V,E′)。
设图
G
=
(
V
,
E
)
G = (V, E)
G=(V,E),
∀
v
∈
V
\forall v \in V
∀v∈V,与
v
v
v关联的边数称为
v
v
v的度,记为
d
e
g
v
deg\ v
deg v,并记
δ
(
G
)
=
m
i
n
∀
v
∈
V
{
d
e
g
v
}
Δ
(
G
)
=
m
a
x
∀
v
∈
V
{
d
e
g
v
}
\delta(G) = min_{\forall v \in V }\{deg\ v\} \\ \Delta(G) = max_{\forall v \in V }\{deg\ v\}
δ(G)=min∀v∈V{deg v}Δ(G)=max∀v∈V{deg v}且对于
(
p
,
q
)
(p, q)
(p,q)图
G
G
G,有
∑
v
∈
V
d
e
g
v
=
2
q
\sum_{v \in V} deg\ v = 2q
∑v∈Vdeg v=2q,称为握手定理。其可以推论出生活中的一个现象:握过奇数次手的人有偶数个。
设图
G
=
(
V
,
E
)
G = (V, E)
G=(V,E),若
∀
v
∈
V
\forall v \in V
∀v∈V,都有
d
e
g
v
=
r
deg\ v = r
deg v=r,则称
G
G
G为r-正则图。对于
(
p
,
q
)
(p, q)
(p,q)图,其(p-1)-正则图称为完全图,记作
K
p
K_p
Kp。
设图 G = ( V , E ) , H = ( U , F ) G = (V, E), H = (U, F) G=(V,E),H=(U,F),有 ∣ V ∣ = ∣ U ∣ |V| = |U| ∣V∣=∣U∣,若 ∃ ϕ : V → U \exists \phi: V \rightarrow U ∃ϕ:V→U是双射的,且 ( v 1 , v 2 ) ∈ E (v_1, v_2) \in E (v1,v2)∈E,有 ( ϕ ( v 1 ) , ϕ ( v 2 ) ) ∈ F (\phi(v_1), \phi(v_2)) \in F (ϕ(v1),ϕ(v2))∈F,则称图 G G G和 H H H是同构的,记为 G ≅ H G \cong H G≅H。直观的,对图的顶点进行置换,即可得到其同构图。
设图 G = ( V , E ) G = (V, E) G=(V,E),那么 G G G的补图为 G c = ( V , E c ) G^c = (V, E^c) Gc=(V,Ec),其中 E c = P 2 ( V ) − E E^c = \mathcal{P}_2(V) - E Ec=P2(V)−E。对于同构的图 G G G与 H H H,其补图 G c G^c Gc与 H c H^c Hc也同构。若图 G G G与其补图 G c G^c Gc同构,则称 G G G是自同构图。
1.2 连通图
非形式化的说,设图
G
=
(
V
,
E
)
G = (V, E)
G=(V,E),顶点与边的交错序列称为通道。沿着通道可以访问顶点,即边的端点。若通道的起始顶点也是结束顶点,则称为闭通道。
若
G
G
G的通道没有重复的边,称为一条迹;若没有重复的顶点,称为一条路。闭通道的迹称为闭迹,而闭通道的路称为闭路,也称为圈。
设图
G
=
(
V
,
E
)
G = (V, E)
G=(V,E),
∀
u
,
v
∈
V
\forall u, v \in V
∀u,v∈V,都存在
u
u
u与
v
v
v之间的路,称
G
G
G是连通图。
设
(
p
,
q
)
(p, q)
(p,q)图
G
=
(
V
,
E
)
G = (V, E)
G=(V,E),若
(
u
,
v
)
∉
E
(u, v) \notin E
(u,v)∈/E,且
d
e
g
u
+
d
e
g
v
≥
p
−
1
deg\ u +deg\ v \ge p - 1
deg u+deg v≥p−1,那么
G
G
G连通。
考察该定理,
u
u
u与
v
v
v之间有路是是自反的、对称的、传递的,即是一个等价关系,根据该等价关系可以得到一个划分,对于一个等价类的所有顶点,可以得到一个导出子图,令其顶点为
V
i
V_i
Vi,取
E
i
=
P
2
(
V
i
)
∩
E
E_i = \mathcal{P}_2(V_i) \cap E
Ei=P2(Vi)∩E,称
G
i
=
(
V
i
,
E
i
)
G_i = (V_i, E_i)
Gi=(Vi,Ei)为极大连通子图,也称为支。
若
d
e
g
u
+
d
e
g
v
≥
p
−
1
deg\ u +deg\ v \ge p - 1
deg u+deg v≥p−1的情况下,
G
G
G不是一个连通子图,那么
G
G
G至少有2个支。记为
G
1
=
(
V
1
,
E
1
)
G_1 = (V_1, E_1)
G1=(V1,E1)与
G
2
=
(
V
2
,
E
2
)
G_2= (V_2, E_2)
G2=(V2,E2),令
∣
V
1
∣
=
n
,
∣
V
2
∣
=
p
−
n
|V_1| = n, |V_2| = p - n
∣V1∣=n,∣V2∣=p−n
∀
u
,
v
∈
V
\forall u, v \in V
∀u,v∈V,若
u
∈
V
1
u \in V_1
u∈V1,那么
d
e
g
u
≤
n
−
1
deg\ u \le n - 1
deg u≤n−1若
v
∈
V
2
v \in V_2
v∈V2,那么
d
e
g
v
≤
p
−
n
−
1
deg\ v \le p - n - 1
deg v≤p−n−1那么有
d
e
g
u
+
d
e
g
v
≤
p
−
2
deg\ u +deg\ v \le p - 2
deg u+deg v≤p−2与条件矛盾。
设图
G
=
(
V
,
E
)
G = (V, E)
G=(V,E),若
∃
v
∈
V
\exists v \in V
∃v∈V,
d
e
g
v
>
0
deg\ v > 0
deg v>0且
∀
v
∈
V
\forall v \in V
∀v∈V,
d
e
g
v
m
o
d
2
=
0
deg\ v\ mod\ 2 = 0
deg v mod 2=0,则
G
G
G中有圈。
考察该定理,考虑
G
G
G中最长的路
v
1
v
2
.
.
v
n
v_1v_2..v_n
v1v2..vn,由于
d
e
g
v
1
deg\ v_1
deg v1是偶数,则除了
(
v
1
,
v
2
)
∈
E
(v_1, v_2) \in E
(v1,v2)∈E,
∃
v
i
,
3
≤
i
≤
n
,
(
v
1
,
v
i
)
∈
E
\exists v_i, 3 \le i \le n, (v_1, v_i) \in E
∃vi,3≤i≤n,(v1,vi)∈E即有闭路
v
1
v
2
.
.
.
v
i
v
1
v_1v_2...v_iv_1
v1v2...viv1,即存在圈。且由此易知对于
δ
(
G
)
≥
m
≥
2
\delta(G) \ge m \ge 2
δ(G)≥m≥2,则存在长至少为
m
+
1
m+1
m+1的圈。
1.3 双图
设图
G
=
(
V
,
E
)
G = (V, E)
G=(V,E),若存在
V
V
V的二划分
{
V
1
,
V
2
}
\{V_1, V_2\}
{V1,V2},使得
∀
(
u
,
v
)
∈
E
\forall (u, v) \in E
∀(u,v)∈E,都有
u
∈
V
1
,
v
∈
V
2
u \in V_1, v \in V_2
u∈V1,v∈V2或
u
∈
V
2
,
v
∈
V
1
u \in V_2, v \in V_1
u∈V2,v∈V1,则称图
G
G
G是一个双图。
若图
G
=
(
V
,
E
)
G = (V, E)
G=(V,E)是一个双图,且是一个完全图,则称
G
G
G是一个完全双图,对于
∣
V
1
∣
=
m
,
∣
V
2
∣
=
n
|V_1|=m, |V_2|=n
∣V1∣=m,∣V2∣=n,记完全双图为
K
m
,
n
K_{m, n}
Km,n。
设图
G
=
(
V
,
E
)
G = (V, E)
G=(V,E),那么
G
G
G是双图的充要条件为
G
G
G中圈的长度为偶数。
考察该定理的必要性,若图
G
=
(
V
,
E
)
G = (V, E)
G=(V,E)是双图,则有划分
V
=
{
V
1
,
V
2
}
V = \{V_1, V_2\}
V={V1,V2},并考虑任意圈
v
1
v
2
v
3
.
.
.
v
n
v
1
v_1v_2v_3...v_nv_1
v1v2v3...vnv1,由于
G
G
G是双图,故必有
v
1
,
v
3
,
v
5
,
.
.
.
v_1, v_3, v_5, ...
v1,v3,v5,...位于同一划分,而
v
2
,
v
4
,
v
6
,
.
.
.
v_2, v_4, v_6, ...
v2,v4,v6,...位于另一划分,故
n
n
n必为偶数。
再考察该定理的充分性,考虑
v
∈
V
v \in V
v∈V,构造集合
V
1
,
V
2
V_1, V_2
V1,V2,使得
v
∈
V
1
v \in V_1
v∈V1。设
u
u
u与
v
v
v的距离为
d
(
u
,
v
)
d(u, v)
d(u,v),那么令
V
1
=
{
u
∣
d
(
u
,
v
)
m
o
d
2
=
0
}
V_1 = \{u|d(u, v)\ mod\ 2 = 0\}
V1={u∣d(u,v) mod 2=0},
V
2
=
V
−
V
1
V_2 = V - V_1
V2=V−V1。考察
V
1
V_1
V1,若
∃
u
,
w
∈
V
1
,
(
u
,
w
)
∈
E
\exists u, w \in V_1, (u, w) \in E
∃u,w∈V1,(u,w)∈E,那么有
d
(
u
,
v
)
m
o
d
2
=
0
d
(
w
,
v
)
m
o
d
2
=
0
d
(
u
,
w
)
=
1
d(u, v)\ mod\ 2 = 0 \\ d(w, v)\ mod\ 2 = 0 \\ d(u, w) = 1
d(u,v) mod 2=0d(w,v) mod 2=0d(u,w)=1此时
u
,
v
,
w
u, v, w
u,v,w构成圈,且长度为奇数,与条件矛盾。故
V
1
,
V
2
V_1, V_2
V1,V2构成了二划分,使得
G
G
G是双图。
设
(
p
,
q
)
(p, q)
(p,q)图
G
=
(
V
,
E
)
G = (V, E)
G=(V,E),若
G
G
G中不存在长度为3的圈,则
q
≤
⌊
p
2
/
4
⌋
q \le \lfloor p^2/4 \rfloor
q≤⌊p2/4⌋,称为图兰【Turán】定理。
考察该定理,假设成立并归纳:
1.显然,
p
=
1
,
2
p = 1, 2
p=1,2,定理成立;
2.设
p
=
2
N
+
1
p = 2N + 1
p=2N+1,
∀
(
u
,
v
)
∈
E
\forall (u, v) \in E
∀(u,v)∈E,
G
−
u
−
v
=
G
′
G - u - v = G'
G−u−v=G′,那么
G
′
G'
G′是一个
(
2
N
−
1
,
q
′
)
(2N - 1, q')
(2N−1,q′)图,那么根据定理,有
q
′
≤
⌊
p
′
2
/
4
⌋
=
⌊
(
2
N
−
1
)
2
/
4
⌋
=
N
2
−
N
q' \le \lfloor p'^2/4 \rfloor = \lfloor (2N-1)^2/4 \rfloor = N^2 - N
q′≤⌊p′2/4⌋=⌊(2N−1)2/4⌋=N2−N考察
G
G
G与
G
′
G'
G′的边数的关系,由于不存在边数为3的圈的约束,有
d
e
g
u
+
d
e
g
v
≤
p
deg\ u + deg\ v \le p
deg u+deg v≤p,故
q
≤
q
′
+
p
−
1
=
q
′
+
2
N
≤
N
2
+
N
=
⌊
(
2
N
+
1
)
2
/
4
⌋
q \le q' + p - 1 = q' + 2N \le N^2 + N = \lfloor (2N+1)^2/4 \rfloor
q≤q′+p−1=q′+2N≤N2+N=⌊(2N+1)2/4⌋得证;
3.设
p
=
2
N
p = 2N
p=2N,
∀
(
u
,
v
)
∈
E
\forall (u, v) \in E
∀(u,v)∈E,
G
−
u
−
v
=
G
′
G - u - v = G'
G−u−v=G′,那么
G
′
G'
G′是一个
(
2
N
−
2
,
q
′
)
(2N - 2, q')
(2N−2,q′)图,那么根据定理,有
q
′
≤
⌊
p
′
2
/
4
⌋
=
⌊
(
2
N
−
2
)
2
/
4
⌋
=
N
2
−
2
N
+
1
q' \le \lfloor p'^2/4 \rfloor = \lfloor (2N-2)^2/4 \rfloor = N^2 - 2N + 1
q′≤⌊p′2/4⌋=⌊(2N−2)2/4⌋=N2−2N+1考察
G
G
G与
G
′
G'
G′的边数的关系,由于不存在边数为3的圈的约束,有
d
e
g
u
+
d
e
g
v
≤
p
deg\ u + deg\ v \le p
deg u+deg v≤p,故
q
≤
q
′
+
p
−
1
=
q
′
+
2
N
−
1
≤
N
2
=
⌊
(
2
N
)
2
/
4
⌋
q \le q' + p - 1 = q' + 2N -1 \le N^2 = \lfloor (2N)^2/4 \rfloor
q≤q′+p−1=q′+2N−1≤N2=⌊(2N)2/4⌋得证。
1.4 欧拉图
设图
G
=
(
V
,
E
)
G = (V, E)
G=(V,E),包含
G
G
G的所有迹的所有顶点与所有边的迹称为欧拉迹,当欧拉迹为闭迹时,称为欧拉闭迹。包含欧拉闭迹的图称为欧拉图。
G
G
G是欧拉图的充要条件是:
G
G
G是连通的且每个顶点的度为偶数,称为欧拉【Euler】定理。
考察必要性,
G
G
G是欧拉图,则
G
G
G包含欧拉闭迹,即连通的,且显然,形成闭迹时,顶点的度均为偶数。
再考察充分性,
G
G
G是连通的且每个顶点的度为偶数,那么
G
G
G具有圈
C
1
C_1
C1,若
C
1
C_1
C1是一条欧拉闭迹,则得证;否则去除圈
C
1
C_1
C1,得到的图的顶点的度也是偶数,且也是连通的,具有圈
C
2
C_2
C2,直到
C
k
C_k
Ck,且若干个圈没有公共边,从而形成了欧拉闭迹。
若图是自反的,则称为带环图,直观的,图的顶点与自己邻接;若图的关系有多个等价类,则称为多重图,直观的,图的顶点之间有多重邻接。带环图与多重图统称为伪图,欧拉定理对于伪图也成立。
设图
G
=
(
V
,
E
)
G = (V, E)
G=(V,E),图
G
G
G中有一条欧拉开迹的充要条件为:如果
G
G
G中有2个奇度顶点。
若
G
G
G有2n个奇度顶点,那么
G
G
G至少有n条迹。
1.5 哈密顿图
设图
G
=
(
V
,
E
)
G = (V, E)
G=(V,E),如果
G
G
G中有生成圈,则称
G
G
G为哈密顿图。
G = ( V , E ) G = (V, E) G=(V,E)是哈密顿图的必要条件是:对于 S ⊆ V S \subseteq V S⊆V,取 w ( G − S ) w(G - S) w(G−S)表示去除 S S S后形成的图的支的个数,那么 w ( G − S ) ≤ ∣ S ∣ w(G - S) \le |S| w(G−S)≤∣S∣。
(
p
,
q
)
(p, q)
(p,q)图
G
=
(
V
,
E
)
G = (V, E)
G=(V,E)是哈密顿图的充分条件是:
p
>
3
p > 3
p>3且
∀
v
∈
V
\forall v \in V
∀v∈V,
d
e
g
v
≥
p
/
2
deg\ v \ge p/2
deg v≥p/2。其称为狄拉克【Dirac】定理。
考察其逆否命题,若
G
G
G不是哈密顿图,那么其也一定不是
K
p
K_p
Kp,即存在
u
,
v
∈
V
u, v \in V
u,v∈V不邻接,设在
G
G
G中加入
(
u
,
v
)
(u, v)
(u,v),直到
G
∗
G^*
G∗是哈密顿图,从中去除最后加入的边,得到的
G
′
G'
G′必存在哈密顿路。设
G
′
G'
G′的哈密顿路的首个顶点
v
v
v与顶点
v
i
1
,
.
.
.
,
v
i
k
v_{i1}, ..., v_{ik}
vi1,...,vik邻接,那么末尾顶点
v
p
v_p
vp不能与
v
i
j
−
1
v_{ij-1}
vij−1邻接,否则形成
v
1
v
i
k
v
i
k
+
1
.
.
.
v
p
v
i
k
−
1
v
i
k
−
2
.
.
.
v
1
v_1v_{ik}v_{ik+1}...v_pv_{ik-1}v_{ik-2}...v_1
v1vikvik+1...vpvik−1vik−2...v1的哈密顿圈。由于
d
e
g
v
1
=
k
deg\ v_1 = k
deg v1=k,那么
d
e
g
v
p
≤
p
−
1
−
k
deg\ v_p \le p-1-k
deg vp≤p−1−k。故有
d
e
g
v
1
+
d
e
g
v
p
≤
p
−
1
deg\ v_1 + deg\ v_p \le p - 1
deg v1+deg vp≤p−1即
v
1
v_1
v1或
v
p
v_p
vp的度小于
p
/
2
p/2
p/2。即得到命题:若
G
G
G不是哈密顿图,那么
∃
v
∈
V
\exists v \in V
∃v∈V,
d
e
g
v
<
p
/
2
deg v < p/2
degv<p/2,其逆否命题即为狄拉克定理。
上述证明也可以得出,对于
(
p
,
q
)
(p, q)
(p,q)图
G
=
(
V
,
E
)
G = (V, E)
G=(V,E),若
∀
u
,
v
∈
V
\forall u, v \in V
∀u,v∈V,
(
u
,
v
)
∉
E
(u, v) \notin E
(u,v)∈/E,若
d
e
g
u
+
d
e
g
v
≥
p
deg\ u + deg\ v \ge p
deg u+deg v≥p,则
G
G
G是哈密顿图,称为奥尔【Ore】定理。
推广的,对于
(
p
,
q
)
(p, q)
(p,q)图
G
=
(
V
,
E
)
G = (V, E)
G=(V,E),若
∀
u
,
v
∈
V
\forall u, v \in V
∀u,v∈V,
(
u
,
v
)
∉
E
(u, v) \notin E
(u,v)∈/E,若
d
e
g
u
+
d
e
g
v
≥
p
−
1
deg\ u + deg\ v \ge p-1
deg u+deg v≥p−1,则
G
G
G包含一个哈密顿路。
1.6 图的表示
图可以直观的采用图解表示。考虑图
G
=
(
V
,
E
)
G = (V, E)
G=(V,E),其中
V
=
{
v
1
,
v
2
,
v
3
,
v
4
}
V = \{v_1, v_2, v_3, v_4\}
V={v1,v2,v3,v4},
E
=
{
(
v
1
,
v
2
)
,
(
v
2
,
v
3
)
,
(
v
3
,
v
4
)
}
E = \{(v_1, v_2), (v_2, v_3), (v_3, v_4)\}
E={(v1,v2),(v2,v3),(v3,v4)},那么其图为
当图的顶点或边有代价时,就形成了带权图,即
G
=
(
V
,
E
,
f
,
g
)
G = (V, E, f, g)
G=(V,E,f,g),其中
f
:
V
→
R
,
g
→
R
f:V \rightarrow R, g \rightarrow R
f:V→R,g→R。带权图具有典型的最短路径等问题,详见数据结构——图。
图也可以使用邻接矩阵表示,其为 ( 0 1 0 0 1 0 1 0 0 1 0 1 0 0 1 0 ) \left( \begin{matrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1\\ 0 & 0 & 1 & 0 \\ \end{matrix} \right ) ⎝⎜⎜⎛0100101001010010⎠⎟⎟⎞邻接矩阵有如下定理:对于图 G = ( V , E ) G = (V, E) G=(V,E)及其邻接矩阵 B \bm{B} B,那么从顶点 v i v_i vi到 v j v_j vj的长为 l l l的通道共有 ( B l ) i j (\bm{B}^l)_{ij} (Bl)ij条。
在计算机中,稀疏的大型邻接矩阵将浪费大量存储空间,使用指针将分散的内存组织成结构,形成邻接表。上述图的邻接表为
此外,通过顶点与边的关系,可以构造关联矩阵,上述图的关联矩阵为
(
1
0
0
1
1
0
0
1
1
0
0
1
)
\left( \begin{matrix} 1 & 0 & 0\\ 1 & 1 & 0\\ 0 & 1 & 1\\ 0 & 0 & 1\\ \end{matrix} \right )
⎝⎜⎜⎛110001100011⎠⎟⎟⎞
其中一维表示边,二维表示顶点。
二、树
树是一种数据结构,作为图的一种,其在计算机科学中,尤其是算法中有着重要的作用。
2.1 树
一个连通的、无圈的图称为树,树中度为1的顶点称为叶。相似的,一个不连通的、无圈的图称为森林。仅有一个顶点的树,称为平凡树,则非平凡树至少有2个叶。
设
(
p
,
q
)
(p, q)
(p,q)图
G
=
(
V
,
E
)
G = (V, E)
G=(V,E),那么
G
G
G是树的等价命题包括:
-
G
G
G的任意两个顶点之间存在唯一的路;
-
G
G
G是连通的,且有
p
=
q
+
1
p = q + 1
p=q+1;
-
G
G
G是无圈的,且在
G
G
G的任意两个不邻接的顶点之间增加一条边,可以得到有唯一圈的图。
设图
G
=
(
V
,
E
)
G = (V, E)
G=(V,E),若
∀
e
∈
E
\forall e \in E
∀e∈E,有
G
−
e
G - e
G−e不连通,那么称
G
G
G是一个极小连通图。
G
G
G是树的充要条件为
G
G
G是极小连通图。
设树 G = ( V , E ) G = (V, E) G=(V,E), ∀ v ∈ V \forall v \in V ∀v∈V,定义 v v v的偏心率用于描述了该顶点与其他所有顶点的距离的度量,记作 e ( v ) = m a x u ∈ V { d ( u , v ) } e(v) = max_{u \in V}\{d(u, v)\} e(v)=maxu∈V{d(u,v)},并定义树 G G G的半径为 r ( G ) = m i n v ∈ V { e ( v ) } r(G) = min_{v \in V}\{e(v)\} r(G)=minv∈V{e(v)}。那么树 G G G的中心是一个集合 H ⊆ V H \subseteq V H⊆V,有 H = { v ∣ v ∈ V , e ( v ) = r ( G ) } H = \{v|v \in V, e(v) = r(G)\} H={v∣v∈V,e(v)=r(G)}。
2.2 生成树
设图
G
=
(
V
,
E
)
G = (V, E)
G=(V,E),
G
G
G的一个生成子图如果也是树,则称该生成子图为
G
G
G的生成树。
设图
G
=
(
V
,
E
)
G = (V, E)
G=(V,E),则
G
G
G有生成树的充要条件为
G
G
G是连通的。
设带权图 G = ( V , E , w ) G = (V, E, w) G=(V,E,w),其中 w : E → R + w:E \rightarrow R_+ w:E→R+, T T T是 G G G的生成树,那么权和最小的生成树称为最小生成树。最小生成树的构造算法包括普里姆【Prim】算法与克鲁斯卡尔【Kruskal】算法,详见数据结构——图。
2.3 割集
设图
G
=
(
V
,
E
)
G = (V, E)
G=(V,E),
v
∈
V
v \in V
v∈V,若
G
−
v
G-v
G−v的支数大于
G
G
G的支数,那么
v
v
v是
G
G
G的一个割点。
设图
G
=
(
V
,
E
)
G = (V, E)
G=(V,E),那么
v
v
v是割点的等价命题包括:
-
∃
u
,
w
∈
V
\exists u, w \in V
∃u,w∈V,
u
≠
w
u \ne w
u=w,
u
u
u与
w
w
w之间的所有路均通过
v
v
v;
-存在
V
−
{
v
}
V - \{v\}
V−{v}的一个划分
{
u
,
w
}
\{u, w\}
{u,w},使得
∀
u
∈
U
,
w
∈
W
\forall u \in U, w \in W
∀u∈U,w∈W,
u
,
w
u, w
u,w之间的所有路均通过
v
v
v。
设图
G
=
(
V
,
E
)
G = (V, E)
G=(V,E),
e
∈
V
e \in V
e∈V,若
G
−
e
G-e
G−e的支数大于
G
G
G的支数,那么
e
e
e是
G
G
G的一个桥,桥的性质与割点相似:
-
∃
u
,
w
∈
V
\exists u, w \in V
∃u,w∈V,
u
≠
w
u \ne w
u=w,
u
u
u与
w
w
w之间的所有路均通过
e
e
e;
-存在
V
−
{
v
}
V - \{v\}
V−{v}的一个划分
{
u
,
w
}
\{u, w\}
{u,w},使得
∀
u
∈
U
,
w
∈
W
\forall u \in U, w \in W
∀u∈U,w∈W,
u
,
w
u, w
u,w之间的所有路均通过
e
e
e。
三、图的连通与匹配
无论是计算机科学的网络,还是现实的工程问题,图模型的连通性在一定程度上反映了系统的容错性。
3.1 连通度
设图
G
=
(
V
,
E
)
G = (V, E)
G=(V,E),若
∃
v
1
,
v
2
,
.
.
.
v
n
\exists v_1, v_2, ... v_n
∃v1,v2,...vn,使得
G
−
(
v
1
+
.
.
.
+
v
n
)
G - (v_1 + ... + v_n)
G−(v1+...+vn)是不连通图或平凡图,称所需去掉的最少顶点数为
G
G
G的顶点连通度,简称为连通度,记作
K
(
G
)
K(G)
K(G);所需去掉的最少边数,称为
G
G
G的边连通度,记为
λ
(
G
)
\lambda(G)
λ(G)。典型的,不连通图或平凡图
G
G
G,有
K
(
G
)
=
λ
(
G
)
=
0
K(G) = \lambda(G) = 0
K(G)=λ(G)=0,而树
T
T
T有
K
(
T
)
=
λ
(
T
)
=
1
K(T) = \lambda(T) = 1
K(T)=λ(T)=1。
最小度、顶点连通度、边连通度是一组构造工程系统的约束参数。
设图
G
=
(
V
,
E
)
G = (V, E)
G=(V,E),那么有
K
(
G
)
≤
λ
(
G
)
≤
δ
(
G
)
K(G) \le \lambda(G) \le \delta(G)
K(G)≤λ(G)≤δ(G)。
考察最小度与边连通度,若
G
G
G不连通,那么有
λ
(
G
)
=
0
≤
δ
(
G
)
\lambda(G) = 0 \le \delta(G)
λ(G)=0≤δ(G);若
G
G
G连通,则
∃
v
∈
V
\exists v \in V
∃v∈V,
d
e
g
v
=
λ
(
G
)
deg\ v = \lambda(G)
deg v=λ(G),对于与
v
v
v关联的
λ
(
G
)
\lambda(G)
λ(G)条边
∑
e
\sum e
∑e,有
G
−
∑
e
G - \sum e
G−∑e不连通,即
λ
(
G
)
=
δ
(
G
)
\lambda(G) = \delta(G)
λ(G)=δ(G)。综上,
λ
(
G
)
≤
δ
(
G
)
\lambda(G) \le \delta(G)
λ(G)≤δ(G)。
考察最小度与顶点连通度,若
G
G
G不连通或是平凡的,有
K
(
G
)
=
λ
(
G
)
=
0
K(G) = \lambda(G) = 0
K(G)=λ(G)=0;若
G
G
G连通且非平凡的,如果
G
G
G有桥,那么
K
(
G
)
=
1
≤
λ
(
G
)
K(G) = 1 \le \lambda(G)
K(G)=1≤λ(G),而
G
G
G没有桥,则
∃
v
∈
V
\exists v \in V
∃v∈V,
d
e
g
v
=
λ
(
G
)
deg\ v = \lambda(G)
deg v=λ(G),对于与
v
v
v关联的
λ
(
G
)
\lambda(G)
λ(G)条边与点
∑
v
+
e
\sum v+e
∑v+e,有
G
−
∑
(
v
+
e
)
G - \sum (v+e)
G−∑(v+e)不连通,即
λ
(
G
)
=
K
(
G
)
\lambda(G) = K(G)
λ(G)=K(G)。综上,
K
(
G
)
≤
λ
(
G
)
K(G) \le \lambda(G)
K(G)≤λ(G)。
∀ k ≤ λ ≤ δ \forall k \le \lambda \le \delta ∀k≤λ≤δ,总存在 G G G,使得 K ( G ) = k , λ ( G ) = λ , δ ( G ) = δ K(G) = k , \lambda(G) = \lambda, \delta(G) = \delta K(G)=k,λ(G)=λ,δ(G)=δ。
3.2 n-连通
设图
G
=
(
V
,
E
)
G = (V, E)
G=(V,E),若
K
(
G
)
≥
n
K(G) \ge n
K(G)≥n,则称
G
G
Gn-顶点连通,或简称为n-连通;若
λ
(
G
)
≥
n
\lambda(G) \ge n
λ(G)≥n,则称
G
G
Gn-边连通。典型的,树是1-连通的。
设图
G
=
(
V
,
E
)
G = (V, E)
G=(V,E),
∣
V
∣
≥
3
|V| \ge 3
∣V∣≥3,
G
G
G是2-连通的充要条件为
∀
u
,
v
∈
V
\forall u, v \in V
∀u,v∈V,
u
,
v
u, v
u,v都在
G
G
G的同一个圈上。
考察该定理的充分性,若
G
G
G的任意两个顶点都在
G
G
G的同一个圈上,那么
G
G
G没有割点,即
K
(
G
)
≥
2
K(G) \ge 2
K(G)≥2,即2-连通;在考察必要性,
K
(
G
)
≥
2
K(G) \ge 2
K(G)≥2,取
d
(
u
,
v
)
d(u, v)
d(u,v),那么当
d
(
u
,
v
)
=
1
d(u, v) = 1
d(u,v)=1,
K
(
G
)
≥
2
K(G) \ge 2
K(G)≥2,显然,
u
,
v
u, v
u,v形成圈;设
d
(
u
,
v
)
=
k
d(u, v) = k
d(u,v)=k,
d
(
u
,
v
′
)
=
k
−
1
d(u, v') = k-1
d(u,v′)=k−1且
u
,
v
′
u, v'
u,v′位于一个圈上,且
K
(
G
)
≥
2
K(G) \ge 2
K(G)≥2,那么
G
−
v
′
G-v'
G−v′中,
u
u
u与
v
v
v之间有路,即在
G
G
G中,
u
u
u与
v
v
v之间存在圈。
3.3 匹配问题
设图
G
=
(
V
,
E
)
G = (V, E)
G=(V,E),
I
⊆
V
I \subseteq V
I⊆V,
∀
u
,
v
∈
I
\forall u, v \in I
∀u,v∈I,
(
u
,
v
)
∉
E
(u, v) \notin E
(u,v)∈/E,称
I
I
I为独立集;
x
,
y
∈
E
x, y \in E
x,y∈E,若
x
x
x与
y
y
y没有共同端点,称
x
x
x与
y
y
y独立,若
S
⊆
E
S \subseteq E
S⊆E,
∀
x
,
y
∈
E
\forall x, y \in E
∀x,y∈E独立,称
S
S
S是边独立集,也称为匹配。
设偶图
G
=
(
V
1
∪
V
2
,
E
)
G = (V_1 \cup V_2, E)
G=(V1∪V2,E),若有
G
G
G的匹配
S
S
S,使得
∣
S
∣
=
m
i
n
{
∣
V
1
∣
,
∣
V
2
∣
}
|S| = min\{|V_1|, |V_2|\}
∣S∣=min{∣V1∣,∣V2∣},则称该匹配为完全匹配;若有
∣
S
∣
=
∣
V
1
∣
=
∣
V
2
∣
|S| = |V_1| = |V_2|
∣S∣=∣V1∣=∣V2∣,则称为完美匹配。
设图
G
=
(
V
,
E
)
G = (V, E)
G=(V,E),
D
⊆
V
D \subseteq V
D⊆V,
∀
u
,
v
∈
D
\forall u, v \in D
∀u,v∈D,
(
u
,
v
)
∈
D
(u, v) \in D
(u,v)∈D,称
D
D
D为团。
设偶图 G = ( V 1 ∪ V 2 , E ) G = (V_1 \cup V_2, E) G=(V1∪V2,E), ∣ V 1 ∣ < ∣ V 2 ∣ |V_1|<|V_2| ∣V1∣<∣V2∣,那么存在完全匹配 S S S的充要条件为: ∀ k , 1 ≤ k ≤ ∣ V 1 ∣ , ∑ i k d e g v ≥ k , v ∈ V 1 \forall k, 1 \le k \le |V_1|, \sum_{i}^k deg\ v \ge k, v \in V_1 ∀k,1≤k≤∣V1∣,∑ikdeg v≥k,v∈V1,称为霍尔【Hall】定理。