【离散数学】图论

图的基本概念

  • 无序结点对: 结点对和次序无关
    在这里插入图片描述

  • 有序结点对: 结点对和次序有关
    在这里插入图片描述

  • 邻接 邻接是点与点或者边与边之间的关系。在无向图中,如果两个点之间至少有一条边相连,则称这两个点是邻接的。同样,如果两条边有共同的顶点,则两条边也是邻接的。

  • 关联: 关联是点与边之间的关系。一个点如果是一条边的顶点之一,则称为该点与该边关联
    在这里插入图片描述

  • 悬挂点: 度数为1的点

  • 孤立点: 度数为0的点

  • 自环,自回路

在这里插入图片描述

顶点的度

在无向图中,指与该顶点相关联的边的条数。

  • 偶度顶点: 度数为偶数的顶点
    奇度顶点: 度数为奇数的顶点
  • 入度: 以结点v为终点的边数 d i ( v ) d_i(v) di(v) input
    出度: 以结点v为起点的边数 d o ( v ) d_o(v) do(v) output
    d ( v ) d(v) d(v)= d i ( v ) d_i(v) di(v)+ d o ( v ) d_o(v) do(v)
  • 有向图中,某个顶点有自环,则该顶点的出度和入度分别加1

图的分类

  • 有向图: 图中的所有边均为有向边。
  • 无向图: 图中的所有边均为无向边。
  • 多重图: 含有平行边的图
  • 简单图: 不含有自环和平行边的图
  • 有限图: 顶点集和边集均为有限集的图

子图

  • 子图: 图G’中的点集和边集为图G的子集(G’=<V’,E‘>,G=<V,E>且V’ ⊆ \subseteq V,E’ ⊆ \subseteq E)G’为G的子图
  • 真子图: 图G’中的点集和边集为图G的子集(G’=<V’,E‘>,G=<V,E>且V’ ⊆ \subseteq V,E’ ⊂ \subset E)G’为G的子图
  • 生成子图: 图G’中的点集与G相等,边集为G的子集(G’=<V’,E‘>,G=<V,E>且V’=V,G’ ⊆ \subseteq G)G’为G的生成子图

(n,m)图

  • (n,m)图: 一个具有n个结点(阶)、m条边所组成的图。
  • 零图: (n,0)一个没有边的图
  • 平凡图: (1,0)只有一个点的图
  • 空图: 顶点集和边集均为空

完全图

  • 无向完全图: 无向简单图G (n,m) ,如果其n个结点中的每一个均与其余n-1个结点邻接。
    边数m= n ( n − 1 ) 2 \frac{n(n-1)}2 2n(n1)
  • 有向完全图: 有向简单图G (n,m) , 如果其n个结点中的每一个均与其余n-1个结点邻接。
    边数m=n(n-1)

补图

G的补图是由G的所有顶点和为了使G成为完全图所需要添加的那些边所组成的图。

d次正则图

每个顶点均有相同度d的图。

  • n阶零图是0次正则图
  • n个顶点的完全图是(n-1)次正则图。

定理 8.1

G = ( V , E ) G=(V,E) G=V,E, ∑ v ∈ V d ( v ) = 2 ∣ E ∣ {\sum_{v\in V}^{}}d(v)=2|E| vVd(v)=2E

  • 度数和必为偶数
  • 任何(n,m)图中奇度顶点必为偶数个。

图的表示方法

  • 定义描述法: 用点的集合和边的集合来表示
  • 图形表示法: 用小圆圈——顶点;线段——边
  • 矩阵表示法: 用二进制的数{0,1}表示图中点与点、点与边的关系

有权图

在这里插入图片描述

  • 权: 附在边旁说明某种信息的数据
  • 有权边(带权边): 带有权的边
  • 有权图(带权图): 图中的边均是有权边之图

通路 回路 连通图

通路

  • 简单通路: 若通路中的所有边互不相同称为简单通路
  • 基本通路: 若通路中的所有顶点互不相同称为基本通路。
  • 基本通路一定是简单通路
  • 完备通路: 该通路既是简单回路,又是基本回路

回路

  • 基本回路: 若回路长度大于等于3,且所有顶点除了起点和终点是相同点外,没有其他相同顶点在回路中出现。
    在这里插入图片描述

短程

短程(距离):两个顶点间有若干条通路,必有一条长度最短(经过的边最少)

定理 8.2

一个有向(n,m)图中任何基本通路长度不超过(n-1),而任何基本回路长度均不超过n。

连通图

可达

G = < V , E > G=<V,E> G=<V,E>, P,Q是两个顶点 ,若存在一条从P到Q的通路,则称P到Q是可达的

无向图连通

一个无向图G,如果它的任何两结点间均是可达的,则称图G为连通图;否则,称为非连通图。

有向图连通

一个有向连通图G,

  • 弱连通: 如果忽略边的方向后其无向图是连通的
  • 单向连通: 如果其任何两点间至少存在一向是可达的
  • 强连通: 如果其任何两点间均是互相可达的
    在这里插入图片描述

三者关系

  • 强连通一定是弱连通,一定是单向连通
  • 单向连通一定是弱连通

强连通判定
一个有向图D是强连通 ↔ \leftrightarrow D中有一个回路,它至少包含每个顶点一次

图的矩阵表示

邻接矩阵

描述结点与结点之间的关系
a = ( a i j ) n ∗ n a=(a_{ij})_{n*n} a=(aij)nn
M i j = { 1    v i 与 v j 是 邻 接 的 0 M_{ij}=\left\{\begin{array}{l}1\;v_i与v_j是邻接的\\0\end{array}\right. Mij={1vivj0

无向图

  • 无向图的邻接矩阵是对称的
  • 每行元素之和恰好为该顶点的度
  • 所有元素之和等于2m
    在这里插入图片描述

有向图

  • 有向图的邻接矩阵一般是不对称的
    在这里插入图片描述

  • 求一个有向图某点的度数:入度+出度
    将该点对应的行列布尔数相加,分别即为出度和入度的度数
    d o ( v i ) = ∑ k = 1 n a i k d_o(v_i)={\sum_{k=1}^{n}}a_{ik} do(vi)=k=1naik
    d i ( v i ) = ∑ k = 1 n a k i d_i(v_i)={\sum_{k=1}^{n}}a_{ki} di(vi)=k=1naki
    d ( v i ) = d o ( v i ) + d i ( v i ) d(v_i)=d_o(v_i)+d_i(v_i) d(vi)=do(vi)+di(vi)

    A = [ 0 1 0 0 0 0 0 1 0 1 0 0 0 0 1 0 ] A=\begin{bmatrix}0&1&0&0\\0&0&0&1\\0&1&0&0\\0&0&1&0\end{bmatrix} A=0000101000010100
    2的度数=(0+0+0+1)+(1+0+1+0)=3

特殊矩阵

  • 若邻接矩阵的元素全为零,则对应的图是零图。
  • 若邻接矩阵除主对角线元素为0,其他全为1,则对应的图是连通的且为简单完全图。

定理 8.3(矩阵相乘)

设邻接矩阵为A的无向简单图,则 A k A^k Ak(k=1,2,3…)的元素是连接 v i v_i vi v j v_j vj的长度为k的通路的总数,而 a i i k a_{ii}^k aiik v i v_i vi v i v_i vi长度为k的回路总数。

可达矩阵

M i j = { 1    v i 与 v j 是 可 达 的 0 M_{ij}=\left\{\begin{array}{l}1\;v_i与v_j是可达的\\0\end{array}\right. Mij={1vivj0

连通矩阵

对无向图G, n阶方阵C称为G的连通矩阵
在这里插入图片描述

可达矩阵

对有向图D, n阶方阵C称为可达矩阵
在这里插入图片描述

求可达矩阵方法

法一: A为邻接矩阵 P = A + A 2 + A 3 + . . . + A n P=A+A^2+A^3+...+A^n P=A+A2+A3+...+An
法二: 邻接矩阵A当作关系矩阵,求连通矩阵就相当于求A的传递闭包。 $t®=U_{i=1}^\infty =R\cup R^2\cup R^3\cup…\cup R^n\$

关联矩阵

无向图

对于无自环的无向图G,其关联矩阵 M G = ( a i j ) n ∗ m M_G=(a_{ij})_{n*m} MG=(aij)nm
M i j = { 1    v i 与 e j 是 关 联 的 0 M_{ij}=\left\{\begin{array}{l}1\;v_i与e_j是关联的\\0\end{array}\right. Mij={1viej0

在这里插入图片描述

  • 关联矩阵中每列包含两个1;(一个边必和两个点关联)
  • 每行元素之和等于该顶点的度;
  • 一行元素全为0,对应的顶点为孤立点

有向图

M i j = { 1    v i 是 e j 的 起 点 − 1    v i 是 e j 的 终 点 0 M_{ij}=\left\{\begin{array}{l}1\;v_i是e_j的起点\\-1\;v_i是e_j的终点\\0\end{array}\right. Mij=1viej1viej0

在这里插入图片描述

  • 关联矩阵中每列包含两个1;
  • 每行中1的个数为该点的出度,-1的个数即为该点的入度
  • 一行元素全为0,对应的顶点为孤立点
  • 11
    点赞
  • 86
    收藏
    觉得还不错? 一键收藏
  • 2
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值