深度学习+Flask 打包一个AI模型接口并部署上线

🚀 深度学习 + Flask 打包一个 AI 模型接口并部署上线(实战教程)

深度学习模型训练完毕后,我们该如何部署上线让它“动起来”?本篇带你手把手用 Flask 将训练好的 PyTorch 模型封装成 Web 接口,实现一个轻量、可访问的在线 AI 服务。


🧠 一、为什么要部署模型?

训练好的模型不部署,只存在 .pt.h5 文件里,是无法在真实应用中发挥作用的。部署模型的目标:

  • 提供 HTTP API 接口;
  • 供网页、APP、微信小程序、爬虫等访问;
  • 实现在线预测服务(如图像分类、文本分析、语音识别等)。

🧰 二、技术选型与环境准备

项目 说明
框架 Flask:轻量级 Python Web 框架
模型 PyTorch 训练的图像分类模型(如 ResNet)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

风亦辰739

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值