💬 文本分类实战:使用 LSTM 对微博评论进行情感分析(PyTorch 实现)
情感分析是自然语言处理(NLP)中最热门的任务之一,广泛应用于舆情分析、用户反馈理解等场景。本文将带你实战使用 LSTM 模型对 微博评论 进行情感分类,掌握从数据预处理、模型构建、训练评估到预测的完整流程。
🎯 一、项目目标
- 数据集:微博正负面评论文本;
- 任务:判断评论是“正面”还是“负面”;
- 技术路线:使用 PyTorch 构建 LSTM 模型;
- 涉及内容:文本预处理、词嵌入(Embedding)、LSTM 网络、分类输出、训练与测试。
🗃️ 二、数据准备
建议使用微博情感分析数据集,如:
- NLPCC 2014 微博情感分析数据
- 或你自己爬取并手动标注的评论数据。
数据格式如下(C