文本分类实战:使用LSTM对微博评论进行情感分析

💬 文本分类实战:使用 LSTM 对微博评论进行情感分析(PyTorch 实现)

情感分析是自然语言处理(NLP)中最热门的任务之一,广泛应用于舆情分析、用户反馈理解等场景。本文将带你实战使用 LSTM 模型对 微博评论 进行情感分类,掌握从数据预处理、模型构建、训练评估到预测的完整流程。


🎯 一、项目目标

  • 数据集:微博正负面评论文本;
  • 任务:判断评论是“正面”还是“负面”;
  • 技术路线:使用 PyTorch 构建 LSTM 模型;
  • 涉及内容:文本预处理、词嵌入(Embedding)、LSTM 网络、分类输出、训练与测试。

🗃️ 二、数据准备

建议使用微博情感分析数据集,如:

数据格式如下(C

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

风亦辰739

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值