最大公约数

        这是一篇学习笔记,用来记录我学习过程中遇到的、自己认为有价值的知识。

最近在学习算法时发现了一个非常简洁、高效的计算最大公约数的算法——欧几里得算法。

欧几里得算法是一个递归算法,据说在公元前375年就被发明了。

        欧几里得算法:当两个非负整数 x 和 y 都是 0 的时候,它们的最大公约数是 0 ;当两者至少有一个不是 0 的时候,它们的最大公约数是可以除尽二者的最大整数。

                                               gcd(x,y)=x,当y=0时;
                                               ​​​​​​​gcd(x,y)=gcd(y,x\ mod\ y),当y>0时。

以下是代码实现:

#include<iostream>
using namespace std;

int gcd(int num1, int num2)
{
	if (num2 == 0)
		return num1;
	return gcd(num2, num1 % num2);
}

int main(void)
{
	int num1 = 0, num2 = 0;
	cin >> num1 >> num2;

	cout<<gcd(num1, num2)<<endl;

	return 0;
}

共勉!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值