You are given an array of positive integers a1, a2, ..., an × T of length n × T. We know that for any i > n it is true that ai = ai - n. Find the length of the longest non-decreasing sequence of the given array.
Input
The first line contains two space-separated integers: n, T (1 ≤ n ≤ 100, 1 ≤ T ≤ 107). The second line contains n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 300).
Output
Print a single number — the length of a sought sequence.
Sample test(s)
input
4 3 3 1 4 2
output
5
Note
The array given in the sample looks like that: 3, 1, 4, 2, 3, 1, 4, 2, 3, 1, 4, 2. The elements in bold form the largest non-decreasing subsequence.
解题思路:这道题我想到的方法是首先计算出某一段值i->值j的最长不降子序列,然后最终的最长不降子序列是由每一段的最长不降子序列递推而来的,由于T很大,然后我们可以用矩阵快速幂优化我们的状态转移,先想到这把,国庆长假给我放糊涂了,程序写的很繁琐。。。。
#include <cmath>
#include <ctime>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std;
int a[110], b[110];
int dp[110][110];
struct Matrix {
int n;
int mat[100][110];
void zero() {
memset(mat, 0, sizeof(mat));
}
void unit() {
memset(mat, 0, sizeof(mat));
}
friend Matrix operator * (const Matrix &a, const Matrix &b) {
Matrix c;
c.n = a.n;
c.zero();
for(int i = 1; i <= c.n; ++i) {
for(int j = 1; j <= c.n; ++j) {
if(i > j) continue;
for(int k = i; k <= j; ++k) {
for(int l = k; l <= j; ++l) {
c.mat[i][j] = max(c.mat[i][j], a.mat[i][k] + b.mat[l][j]);
}
}
}
}
return c;
}
friend Matrix operator ^ (Matrix a, int x) {
Matrix c;
c.n = a.n;
c = a;
x--;
while(x) {
if(x & 1) c = c * a;
a = a * a;
x >>= 1;
}
return c;
}
};
int bsearch(int x, int n) {
int l = 1, r = n, mid;
while(l <= r) {
mid = (l + r) / 2;
if(b[mid] == x) {
return mid;
} else if(b[mid] < x) {
l = mid + 1;
} else {
r = mid - 1;
}
}
return -1;
}
int main() {
//freopen("aa.in", "r", stdin);
int n, T;
Matrix m;
scanf("%d %d", &n, &T);
for(int i = 1; i <= n; ++i) {
scanf("%d", &a[i]);
b[i] = a[i];
}
sort(b + 1, b + n + 1);
int tn = unique(b + 1, b + n + 1) - b - 1;
for(int i = 1; i <= n; ++i) {
a[i] = bsearch(a[i], tn);
}
memset(dp, 0, sizeof(dp));
for(int i = 1; i <= n; ++i) {
dp[i][i] = 1;
for(int j = 1; j < i; ++j) {
if(a[j] <= a[i]) {
dp[j][i] = 2;
}
}
}
for(int k = 2; k <= n; ++k) {
for(int i = 1; i + k <= n; ++i) {
int j = i + k;
if(a[i] > a[j]) continue;
for(int k = i + 1; k < j; ++k) {
if(a[k] >= a[i] && a[k] <= a[j]) {
dp[i][j] = max(dp[i][j], dp[i][k] + dp[k][j] - 1);
}
}
}
}
m.n = n;
m.zero();
for(int i = 1; i <= n; ++i) {
for(int j = 1; j <= n; ++j) {
m.mat[a[i]][a[j]] = max(m.mat[a[i]][a[j]], dp[i][j]);
}
}
m = m^T;
int ans = 0;
for(int i = 1; i <= m.n; ++i) {
for(int j = 1; j <= m.n; ++j) {
ans = max(ans, m.mat[i][j]);
}
}
printf("%d\n", ans);
return 0;
}