题目链接:BZOJ 3312
题目大意:
按顺序买 N个物品(1 <= N <= 100,000),第i个物品花费c(i),(1<=c(i)<=10,000),用K(1<=K<=16)个面值的范围是 1..100,000,000 硬币支付。购买过程中,可随时停下来付款,每次付款只用一个硬币,支付从上一次支付后到现在的这些所有物品的价格(如果钱够)。如果硬币面值大于所需的费用,不找零。计算买完N个物品后最多剩下多少钱。无法支付所有物品则输出-1。
题解:看K的范围,状压DP。把使用硬币的情况压起来,算出每一种硬币使用情况S下最多能支付前多少件物品dp[S]。思路比较好理解,实现细节详见代码。
code
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
using namespace std;
inline int read()
{
char c=getchar(); int num=0,f=1;
while (c<'0'||c>'9') { if (c=='-') f=-1; c=getchar(); }
while (c<='9'&&c>='0') { num=num*10+c-'0'; c=getchar(); }
return num*f;
}
long long s[100005],dp[100005],tot,ans;
int n,m,k[17];
int main()
{
m=read(); n=read();
for (int i=0;i<m;i++) k[i]=read(),tot+=k[i]; // tot总钱数
for (int i=1;i<=n;i++) s[i]=read(),s[i]+=s[i-1]; //s[]物品价格前缀和
int all=(1<<m)-1;
//这里S和i的循环顺序可以保证dp[S^(1<<i)]的计算先于dp[S]
for (int S=0;S<=all;S++) //每一种状态
for (int i=0;i<m;i++)
if ((S>>i)&1) //如果使用了第i枚硬币,假定最后一次用的是第i枚
{
long long x=dp[S^(1<<i)]; // 用i之前能付多少
x=upper_bound(s+x,s+n+1,k[i]+s[x])-s-1; //现在能付多少
dp[S]=max(dp[S],x); //更新答案
}
ans=1e17;
for (int S=0;S<=all;S++)
if (dp[S]==n)
{
long long res=0;
for (int i=0;i<m;i++)
if ((S>>i)&1) res+=k[i];
ans=min(res,ans);
}
if (ans>tot) puts("-1");
else printf("%lld",tot-ans);
return 0;
}