BZOJ3312 不找零(状压DP)

题目链接:BZOJ 3312
题目大意:
按顺序买 N个物品(1 <= N <= 100,000),第i个物品花费c(i),(1<=c(i)<=10,000),用K(1<=K<=16)个面值的范围是 1..100,000,000 硬币支付。购买过程中,可随时停下来付款,每次付款只用一个硬币,支付从上一次支付后到现在的这些所有物品的价格(如果钱够)。如果硬币面值大于所需的费用,不找零。计算买完N个物品后最多剩下多少钱。无法支付所有物品则输出-1。

题解:看K的范围,状压DP。把使用硬币的情况压起来,算出每一种硬币使用情况S下最多能支付前多少件物品dp[S]。思路比较好理解,实现细节详见代码。

code

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
using namespace std;
inline int read()
{
    char c=getchar(); int num=0,f=1;
    while (c<'0'||c>'9') { if (c=='-') f=-1; c=getchar(); }
    while (c<='9'&&c>='0') { num=num*10+c-'0'; c=getchar(); }
    return num*f;
}
long long s[100005],dp[100005],tot,ans;
int n,m,k[17];
int main()
{
    m=read(); n=read();
    for (int i=0;i<m;i++) k[i]=read(),tot+=k[i];     // tot总钱数 
    for (int i=1;i<=n;i++) s[i]=read(),s[i]+=s[i-1]; //s[]物品价格前缀和 
    int all=(1<<m)-1;
    //这里S和i的循环顺序可以保证dp[S^(1<<i)]的计算先于dp[S] 
    for (int S=0;S<=all;S++)    //每一种状态 
     for (int i=0;i<m;i++)  
      if ((S>>i)&1)     //如果使用了第i枚硬币,假定最后一次用的是第i枚
      {
          long long x=dp[S^(1<<i)];   // 用i之前能付多少 
          x=upper_bound(s+x,s+n+1,k[i]+s[x])-s-1; //现在能付多少 
          dp[S]=max(dp[S],x);   //更新答案 
      }
    ans=1e17;
    for (int S=0;S<=all;S++)
     if (dp[S]==n)
     {
         long long res=0;
         for (int i=0;i<m;i++)
          if ((S>>i)&1) res+=k[i];
         ans=min(res,ans);
     }
     if (ans>tot) puts("-1");
      else printf("%lld",tot-ans);
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值