深度学习安装包下载报错以及解决方案记录1:

1. 安装kornia出现的报错: AssertionError Torch not compiled with CUDA enabled问题:

报错含义是,在编译torch的时候,CUDA并没有起作用。
但在此之前,我已经成功安装CUDA和Pytorch,并在Anaconda prompt终端下成功进行了检验,我所安装的Pytorch是可以受CUDA支持的。

下载这个kornia包会使得 torch1.8.1的版本不兼容,这样它会自动的删除 torch1.8.1,下载
torch2.0.1

pip install kornia

如果不用这个包的话 直接重新下载torch1.8.1

pip install torch==1.8.1+cu102 torchvision==0.9.1+cu102 torchaudio==0.8.1 -f https://download.pytorch.org/whl/torch_stable.html

解决办法:可以创建一个新的虚拟环境:torch2.0

	conda create -n torch2.0 python=x.x

在运行

pip install kornia

conda会自动安装torch2.0所对应的安装包

2.cannot import name ‘inv_ex’ from ‘torch.linalg’

这个指的是torch,不兼容问题
查看 torch.__version__版本

import torch
print(torch.__version__) 
    '1.8.0+cu111

解决办法:降低kornia版本

pip install kornia==0.6.0

3.mmcv安装包下载报错汇总

因为mmcv需要torch与cuda一致下载才能成功
1.因此,可以创建一个虚拟环境

conda create -n your_env_name python=x.x

2.进入虚拟环境

activate your_env_name

3.重新下载cuda与torch,我的cuda是11.4版本
(cuda的硬件可以兼容多个版本的cuda库,比如我之前一直用的是torch-cuda102版本,所以我在下载mmcv的时候一直安装不上,就是因为我一直在安装cuda102版本下的mmcv,这个和我实际的是不适合的)
因此,可以在命令行中通过一下命令查看你实际的版本:

nvcc --version

因此,在虚拟环境中下载对应版本 (因为没有cu114版本)这里可以用cu113代替,这两个没区别

pip install torch==1.12.0+cu113 torchvision==0.13.0+cu113 torchaudio==0.12.0 --extra-index-url https://download.pytorch.org/whl/cu113

4.下载对应mmcv

pip install mmcv-full==1.7.0 -f https://download.openmmlab.com/mmcv/dist/cu113/torch1.12.0/index.html
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值