- 博客(21)
- 收藏
- 关注
原创 Local All-Pair Correspondence for Point Tracking
这篇文章介绍了一种用于视频序列中任意点跟踪的新型方法LoCoTrack。它解决了现有方法在处理纹理均匀或重复特征区域时遇到的匹配模糊问题。文章的核心贡献在于提出了一种新颖的局部全对对应(local all-pair correspondence)方法,即利用局部4D相关性来建立精确的对应关系,并结合双向对应和匹配平滑性来增强鲁棒性。此外,该方法还采用轻量级的相关性编码器来提高计算效率,并利用紧凑的Transformer架构来整合长期时间信息。
2025-06-12 10:36:33
392
原创 Local All-Pair Correspondence for Point Tracking
我们介绍了一种用于视频序列中任意点跟踪的高精度且高效的模型LoCoTrack。以往的方法通常依赖于局部2D相关图来建立查询图像中某点与目标图像中局部区域之间的对应关系,这些方法在处理纹理均匀的区域或重复特征时常常会遇到匹配模糊的挑战。LoCoTrack通过一种新颖的方法克服了这一挑战,即利用区域之间的全对对应关系(即局部4D相关性)来建立精确的对应关系,并通过双向对应和匹配平滑性显著增强了对模糊的鲁棒性。
2025-06-12 10:34:14
1057
原创 [WinError 126] 找不到指定的模块。 Error loading “D:\,,,\Anaconda\Lib\site-packages\torch\lib\fbgemm.dll“ or o
Error loading "D:\,,,\Anaconda\Lib\site-packages\torch\lib\fbgemm.dll" or one of its dependencies.下载完后,把文件中的“libomp140.x86_64.dll”复制到报错的文件夹下(D:\。\Anaconda\Lib\site-packages\torch\lib\),就解决了。主要原因就是缺失文件“libomp140.x86_64.dll”标红,表示缺少文件,下载这个文件。
2025-04-07 14:55:58
1034
1
原创 demo.launch(inbrowser=True, share=True)无法生成共享网址
Gradio 的共享功能无法正常工作,原因是缺少一个名为 frpc_windows_amd64_v0.3用到代码app.demo.launch(show_error=True, inbrowser=True, share=True)show_error=True:这个参数的作用是当应用在启动过程中出现错误时,会显示错误信息。这对于调试非常有用,因为它可以帮助开发者快速定位问题。inbrowser=True:这个参数设置为 True 时,会在应用启动时自动打开一个浏览器窗口,这样用户可以直接在浏览器中查看应用
2025-03-31 22:30:08
440
原创 视觉语言大模型模型介绍-CLIP学习
在这个场景中,配对的图像和文本对是正样本,因为它们描述的是相同的内容,这些正样本位于特征矩阵的对角线上。2、 2022年的BL1P, 之前的CLIP是一个图像理解模型,不能对图像进行一个文本描述生成,它是一个集图像生成和文本描述为一体的模型,并且,它考虑到从网络上采集(爬取)的数据存在大量噪声,(这个噪声指图片对应的标签、文本 错误、不匹配),BLIP模型采用了一种称为CapFilt ( Captioning and Filtering) 的方法来去除噪声数据。
2024-09-19 21:18:04
2757
原创 BLIP 的demo运行遇到的问题
运行demo.ipynb遇到的问题,OSError: Can't load tokenizer for 'bert-base-uncased',The size of tensor a (3) must match the size of tensor b (9)
2024-09-12 17:14:08
816
原创 Ultra-Fast-Lane-Detection代码学习与报错解决
论文提出了一种新的车道检测方法,旨在解决在具有挑战性的场景下,如严重遮挡和极端光照条件下,快速检测车道。
2024-05-24 17:15:11
1410
1
原创 DETR学习笔记
为了简化这些流程,作者提出了一种直接的集合预测方法,即DETR,它通过端到端的方式直接输出最终的预测集合,无需手设计的组件。由于padding的区域是无效的,因此就需要一个额外的mask,其中0表示原图区域,而1对应padding区域,这部分的计算都会被mask掉,相当于告诉网络这些是无用的,不需要计算和回传梯度等。相反,它直接在图像的特征图上预测目标的位置和大小。有一个人叫x,他在一系列评判标准W中,计算得到,他的择偶标准是Q,自身条件是K,相亲对象为V,V就是由择偶标准是Q和自身条件是K得到的。
2024-04-08 20:28:10
1536
1
原创 Mobilenet flask 云服务器部署
下载torch conda install pytorch==1.7.1 cpuonly -c pytorch。由于租的云服务器特别小,只有cup,所以只能安装cpu版本的torch和torchversion。网上找的各种方法,哪怕去官网的代码下载也是各种报错,内存不够啥的,上面这句算是不占内存的方法了。重点是在云服务器中安装anaconda和pytorch。根据自己的模型准备.pth和.json文件,配置安全组,一次性配置好这些可以用到的。做一个分类任务,鱼类识别,5.云服务器xshell中运行。
2024-01-04 10:21:09
512
1
原创 pip version available ERROR: Exception: Traceback:和PackagesNotFoundError: 更新pip
但是仍然报错,根据红色的信息提示,需要指定到我的环境的E:\python\anaconda\python.exe。有建议使用有建议说使用easy_install --upgrade pip可以试试或换源。今天在pip库的时候遇到各种问题,报错也看不懂,但大概率是pip版本不行了。有说是因为网络不好,重复了无数次也不行,
2023-12-08 20:16:06
234
原创 yolo数据集中 csv文件-- json文件--txt文件
json_to_txt.py 这里将所有的标签都减了一,可以不改,自己对的上就可以,当前标签:“badge”: 0,“offground”: 1,“ground”: 2,“safebelt”:3 bbox做了归一化(这个分数据集,有的数据集格式不一样,具体情况具体改)将json文件yolov5可用的标签格式。可以读取images文件夹中的多。
2023-12-07 16:04:53
550
原创 yolov5数据集的制作、划分-以识别高空作业及安全带佩戴为例
天池算法赛——广东电网智慧现场作业挑战赛 赛道三:识别高空作业及安全带佩戴这个数据集3_images.tar是图片,an_rname.csv是对应的标签信息,但yolo的数据集格式是而labels里面是每张图片对应的标签信息,我们要将csv文件转换成每一张图片名对应的txt文件。
2023-12-07 16:00:04
2216
2
原创 conda install kornia安装报错
应该就可以安装了,如果还是不行可能是当前的conda环境中其他已经安装的包与kornia存在冲突或依赖问题。原因:在当前的conda频道无法找到kornia包。添加conda-forge频道,直接用conda install kornia报错。
2023-11-20 10:18:37
1485
1
原创 YOLOV5跑3D打印数据集遇到的问题
我删了下,下了删一直不行,最后从根本上解决问题——重装一个环境,用yolov5-6.2中的requirements.txt。该损失值对应每个预测框是否包含一个对象的置信度。由于连接方在一段时间后没有正确答复或连接的主机没有反应,连接尝试失败。该损失值反映了预测框和真实框在位置和大小上的误差。它通过调整网络让预测框更准确地匹配真实框来训练模型。该损失值对应每个预测框预测的类别分数。反映预测框与真值框的重合程度。反映了预测为正的样本中真正正类样本的比例。模型通过最小化该损失调整每个框的分类预测。
2023-10-30 14:38:35
447
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人