题目描述
亚历克斯和李用几堆石子在做游戏。偶数堆石子排成一行,每堆都有正整数颗石子 piles[i] 。
游戏以谁手中的石子最多来决出胜负。石子的总数是奇数,所以没有平局。
亚历克斯和李轮流进行,亚历克斯先开始。 每回合,玩家从行的开始或结束处取走整堆石头。 这种情况一直持续到没有更多的石子堆为止,此时手中石子最多的玩家获胜。
假设亚历克斯和李都发挥出最佳水平,当亚历克斯赢得比赛时返回 true ,当李赢得比赛时返回 false 。
Sample Code
动态规划
动态转移方程:
- dp[i][j].fir = max(piles[i] + dp[i+1][j].sec, piles[j] + dp[i][j-1].sec)
class Pair {
int fir, sec;
public Pair(int fir, int sec) {
this.fir = fir;
this.sec = sec;
}
}
class Solution {
public boolean stoneGame(int[] piles) {
int n = piles.length;
Pair[][] dp = new Pair[n][n];
for(int i = 0; i < n; i++)
for(int j = i; j < n; j++)
dp[i][j] = new Pair(0, 0);
for(int i = 0; i < n; i++) // base case
dp[i][i].fir = piles[i];
for(int i = 2; i <= n; i++) {
for(int j = 0; i+j <= n; j++) {
int k = i + j -1;
// int le = piles[j] + dp[j+1][k].sec;
// int ri = piles[k] + dp[j][k-1].sec;
int le = dp[j][j].fir + dp[j+1][k].sec; // 动态转移方程
int ri = dp[k][k].fir + dp[j][k-1].sec;
if(le > ri) {
dp[j][k].fir = le;
dp[j][k].sec = dp[j+1][k].fir;
}else {
dp[j][k].fir = ri;
dp[j][k].sec = dp[j][k-1].fir;
}
}
}
Pair res = dp[0][n-1];
return (res.fir - res.sec) > 0;
}
}
来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/stone-game
作者:labuladong
链接:https://leetcode-cn.com/problems/stone-game/solution/jie-jue-bo-yi-wen-ti-de-dong-tai-gui-hua-tong-yong/