LeetCode刷题笔记 877. 石子游戏

题目描述

亚历克斯和李用几堆石子在做游戏。偶数堆石子排成一行,每堆都有正整数颗石子 piles[i] 。

游戏以谁手中的石子最多来决出胜负。石子的总数是奇数,所以没有平局。

亚历克斯和李轮流进行,亚历克斯先开始。 每回合,玩家从行的开始或结束处取走整堆石头。 这种情况一直持续到没有更多的石子堆为止,此时手中石子最多的玩家获胜。

假设亚历克斯和李都发挥出最佳水平,当亚历克斯赢得比赛时返回 true ,当李赢得比赛时返回 false 。

Sample Code

动态规划
动态转移方程:

  • dp[i][j].fir = max(piles[i] + dp[i+1][j].sec, piles[j] + dp[i][j-1].sec)
    在这里插入图片描述
class Pair {
    int fir, sec;
    public Pair(int fir, int sec) {
        this.fir = fir;
        this.sec = sec;
    }
}

class Solution {
    public boolean stoneGame(int[] piles) {
        int n = piles.length;
        Pair[][] dp = new Pair[n][n];
        for(int i = 0; i < n; i++)
            for(int j = i; j < n; j++)
                dp[i][j] = new Pair(0, 0);
        
        for(int i = 0; i < n; i++)	// base case
            dp[i][i].fir = piles[i];
        
        for(int i = 2; i <= n; i++) {
            for(int j = 0; i+j <= n; j++) {
                int k = i + j -1;
 
                // int le = piles[j] + dp[j+1][k].sec;
                // int ri = piles[k] + dp[j][k-1].sec;
                int le = dp[j][j].fir + dp[j+1][k].sec;	// 动态转移方程
                int ri = dp[k][k].fir + dp[j][k-1].sec;
                
                if(le > ri) {
                    dp[j][k].fir = le;
                    dp[j][k].sec = dp[j+1][k].fir;
                }else {
                    dp[j][k].fir = ri;
                    dp[j][k].sec = dp[j][k-1].fir;
                }
            }
        }
        Pair res = dp[0][n-1];
        return (res.fir - res.sec) > 0;
    }
}

来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/stone-game
作者:labuladong
链接:https://leetcode-cn.com/problems/stone-game/solution/jie-jue-bo-yi-wen-ti-de-dong-tai-gui-hua-tong-yong/

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值