偏序关系定义
对于非空集合A上的二元关系R,如果R是自反的、反对称的和传递的,则称R为A上的偏序关系(partial order relation),简称为偏序,记为“≤”,读作“小于等于”,并将序偶<x,y>∈R记为x≤y。如果集合A上有偏序关系R,则称A和R为偏序集(partial order set),记为<A,≤>。
设R为非空集合A上的偏序关系,对于任意元素x∈A和y∈A,如果x≤y或者y≤x,则称x与y是可比的(comparable)。若x≤y且x≠y,则称x排在y的前面,记为x<y,读作“x小于y”。如果<x,y>R且<y,x>
R,则称x与y是不可比的(incomparable),或者不是可比的。如果x<y且不存在z∈A,使得x<z且z<y,则称y盖住(covering)x。
盖住集 covA={<x,y>|x,y∈A且y盖住x};
对于偏序关系的关系图表示可进行以下简化。
(1)由于偏序关系是自反的,各结点处均有环,约定全部略去。(除去自环)
(2)由于偏序关系是反对称的,关系图中任何两个不同结点之间不可能有相互到达的边,因此可约定边的向上方向为箭头方向,省略全部箭头。
(3)由于偏序关系是传递的,可以由传递性推出的边也省去。余盖住集
经过这些简化后的偏序关系的关系图称为哈斯图(Hasse graph)。
哈斯图的绘制步骤如下:
(1)以“ ”表示元素;
(2)若x<y,则y画在x的上层;
(3)若y盖住x,则y与x之间连线;
(4)不可比的元素可画在同一层。
例:画出集合A={2,3,4,6,12,24,36}上整除关系的哈斯图。
R={<2,2>,<2,4>,<2,6>,<2,12>,<2,24>,<2,36>,
<3,3>,<3,6>,<3,12>,<3,24>,<3,36>,
<4,4>,<4,12>,<4,24>,<4,36>,
<6,6>,<6,12>,<6,24>,<6,36>,
<12,12>,<12,24>,<12,36>,
<24,24>,
<36,36>}
除去自环—>
<2,2>,<2,4>,<2,6>,<2,12>,<2,24>,<2,36>,
<3,3>,<3,6>,<3,12>,<3,24>,<3,36>,
<4,4>,<4,12>,<4,24>,<4,36>,
<6,6>,<6,12>,<6,24>,<6,36>,
<12,12>,<12,24>,<12,36>,
<24,24>,
<36,36>
除去可由传递性推出的序偶—>
<2,4>,<2,6>,<2,12>,<2,24>,<2,36>,
<3,6>,<3,12>,<3,24>,<3,36>,
<4,12>,<4,24>,<4,36>,
<6,12>,<6,24>,<6,36>,
<12,24>,<12,36>
画出剩余序偶关系图—>
整理箭头方向朝上、删去箭头(不可比元素可画于同一层)
反之根据哈斯图推关系R
例如:
画自环
推传递 补箭头
R={<2,2>,<3,3>,<4,4>,<5,5>,<8,8>,<12,12>,<2,4>,<2,8>,<2,12>,<3,4>,<8,12>}