一 等价关系
定义:设R为非空集合A上的关系, 若R是自反的、 对称的和传递的, 则称R为A上的等价关系。
设R为等价关系, 若<x, y> ∈R,称x等价于y, 记作 x ~ y。
等价关系是一类重要的二元关系。
在数学中,存在很多等价关系,在平面三角形集合中, 三角形的相似关系是等价关系。
在生活中, 一群人年龄相等关系是等价关系,姓氏相同关系也是等价关系。 但朋友关系不是等价关系,因为朋友关系不具备传递性。
二 序关系
定义: 设A是一个非空集合, 如果 A上的关系R满足自反性、 反对称性及传递性, 则称R是A上的一个偏序关系, 记作 " ≼ " 。 集合A与A上的偏序关系 ≼ 一起称为偏序集, 记为 <A, ≼> 。
设 ≼ 为偏序关系, 若<x, y> ∈≼, 读为 "x小于或等于y", 记作 x ≼ y. 例如: 整数集合上的小于等于关系LE ᴀ 也是偏序关系。
学到这里, 我们要明白一个概念:
等价关系——————————> 分类
偏序关系——————————> 排序
从定义来看, 等价关系与偏序关系的差别,只是对称性与反对称性, 但这两种关系的特性完全不同。
· 偏序关系 可表示幂集上的包含关系; {1} {1, 2}
· 偏序关系 可表示正整数集合上的整除关系; 24, 34,43
· 偏序关系 可表示实数集上的大于等于关系; 42;
我们绝不能从 符号的表象上,简单地理解为 小于等于!
~~~~~~~~~~
2.1 可比与覆盖
(1)可比
定义: 设R是非空集合A上的偏序关系, x, y A,
- 如果 x y 或 y x, 则称 x 与 y可比;
- 如果 x y 且不存在 zA ,使得x z y, 则称 y 覆盖 x。
例如:正整数集合上的整除关系中, 2 与 4 可比,6与3可比,4和3不可比, 因为4和3不能整除;
4 和 6 覆盖2, 但 8、12等均不覆盖2, 因为8、12和2 之间还存在4.
可比的含义: 两个元素 存在包含 关系。
覆盖的含义: y 比 x 要大并且不存在任何中间元素, 这就叫做 y 覆盖 x。
三 哈斯图
1. 先介绍覆盖的定义.
覆盖: 设<A, ≼>为偏序集, 对∀a, b∈A, 若a ≺ b且不存在c ∈A, 使得a≺c ≺b, 则称b覆盖a.
记作 COVA = {<a, b> | a ∈A ∧b∈A ∧b覆盖a }.
2. 哈斯图的定义
哈斯图: 表示偏序关系的关系图称为哈斯图, 表示规则为:
- A中每个元素可用顶点表示
- ∀a, b∈A, 若 a≺b, 则将a 画在b 的下方;
- ∀a, b∈A, 若b覆盖a, 则在 a 与 b之间画一条边;
- 哈斯图中省略从顶点到自身的边。
看一个例子