离散数学12_第5章 关系与函数之等价关系与序关系、哈斯图

本文介绍了等价关系和偏序关系的概念,强调了它们在数学和生活中的应用。等价关系如年龄相等、三角形相似,偏序关系如整数的整除和实数的大于等于。等价关系用于分类,偏序关系用于排序。偏序关系还可表示幂集的包含和正整数的整除。同时,文章探讨了偏序集中的可比性和覆盖概念,以及如何通过哈斯图来表示偏序关系。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一 等价关系

定义:设R为非空集合A上的关系, 若R是自反的、 对称的和传递的, 则称R为A上的等价关系。

设R为等价关系, 若<x, y> ∈R,称x等价于y, 记作 x ~ y。

等价关系是一类重要的二元关系。

在数学中,存在很多等价关系,在平面三角形集合中, 三角形的相似关系是等价关系。

在生活中, 一群人年龄相等关系是等价关系,姓氏相同关系也是等价关系。 但朋友关系不是等价关系,因为朋友关系不具备传递性。

 

二 序关系

定义: 设A是一个非空集合, 如果 A上的关系R满足自反性、 反对称性及传递性, 则称R是A上的一个偏序关系, 记作 " ≼ " 。 集合A与A上的偏序关系 ≼ 一起称为偏序集, 记为 <A, ≼> 。

设 ≼ 为偏序关系, 若<x, y> ∈≼, 读为 "x小于或等于y", 记作 x ≼ y. 例如: 整数集合上的小于等于关系LE ᴀ 也是偏序关系。

 

学到这里, 我们要明白一个概念:

等价关系——————————> 分类

 

偏序关系——————————> 排序

从定义来看, 等价关系与偏序关系的差别,只是对称性与反对称性, 但这两种关系的特性完全不同。

watermark,type_d3F5LXplbmhlaQ,shadow_50,text_Q1NETiBAeGltYW5uaTE4,size_20,color_FFFFFF,t_70,g_se,x_16

· 偏序关系 5668b66ca61d48048e457c282591d921.png可表示幂集上的包含关系; {1} 0de121c8f2be43adaa23066e4c804e80.png{1, 2}

· 偏序关系 dd216a8bf94a4cffa532c5efb43164ef.png可表示正整数集合上的整除关系; 26345ba4af33e4ec39ddd589b9e9bdace.png4, 3559bd11fda964dee94452a314470136d.png4,4633dd1ddb5ee4e72a24e3d063be6f5e5.png3

· 偏序关系 e64ab435eb914b5c8428fa081b176068.png可表示实数集上的大于等于关系; 45a1c746e208b447381c1df04efffa11a.png2;

我们绝不能从 符号的表象上,简单地理解为 小于等于

~~~~~~~~~~

2.1 可比与覆盖

 (1)可比

   定义: 设R是非空集合A上的偏序关系, 4e5ba56a6120495fa2bd7ffa6004990c.pngx, y 61f64556236647c6a8045b6e858d42dd.pngA,

  • 如果 x 0bd4d6c745664bc6aa53a6f367b9213d.png y 或 y c68d11a246854194b5940e9fa5df8a3b.pngx, 则称 x 与 y可比;
  • 如果 x 39a4cc580f6a40f6b54afde3d54af197.pngy 且不存在 z2a26b9382fba41528a721d25d3073d6a.pngA ,使得x 9596ed60ebc24bd38a419a3840798f33.png9c4df13077574aac9796fd0718501180.pngy, 则称 y 覆盖 x。

例如:正整数集合上的整除关系中, 2 与 4 可比,6与3可比,4和3不可比, 因为4和3不能整除;

4 和 6 覆盖2, 但 8、12等均不覆盖2, 因为8、12和2 之间还存在4.

可比的含义:  两个元素 存在包含 关系。

覆盖的含义: y 比 x 要大并且不存在任何中间元素, 这就叫做 y 覆盖 x。

 

三 哈斯图

1. 先介绍覆盖的定义.

覆盖: 设<A,  ≼>为偏序集, 对∀a,  b∈A, 若a ≺ b且不存在c ∈A, 使得a≺c ≺b, 则称b覆盖a.

记作 COVA = {<a, b> | a ∈A ∧b∈A ∧b覆盖a }.

2. 哈斯图的定义

哈斯图: 表示偏序关系的关系图称为哈斯图, 表示规则为:

  1. A中每个元素可用顶点表示
  2. ∀a, b∈A, 若 a≺b, 则将a 画在b 的下方; 
  3. ∀a, b∈A, 若b覆盖a, 则在 a 与 b之间画一条边;
  4. 哈斯图中省略从顶点到自身的边。

看一个例子

watermark,type_d3F5LXplbmhlaQ,shadow_50,text_Q1NETiBAeGltYW5uaTE4,size_20,color_FFFFFF,t_70,g_se,x_16

watermark,type_d3F5LXplbmhlaQ,shadow_50,text_Q1NETiBAeGltYW5uaTE4,size_20,color_FFFFFF,t_70,g_se,x_16

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

### 绘制离散数学中的哈斯图 #### 定义基本概念 哈斯图用于直观展示有限偏集的结构。这种图表仅显示覆盖关系,即如果存在一条路径从节点 \( x \) 到另一个节点 \( y \),并且在这两点之间不存在其他任何中间点,则认为 \( x \) 覆盖 \( y \)[^3]。 #### 构建过程详解 为了构建给定偏集中元素之间的哈斯图: - **确定集合成员**:首先识别出所有参比较的对象组成的集合\( A \)。 - **建立二元关系矩阵**:对于任意一对不同的元素\( (x, y) ∈ A × A \),判断是否存在这样的条件使得\( x ≤ y \)成立;这里使用的符号取决于具体的应用场景,在整除的例子中就是指\( x | y \)(读作"x 整除 y")。 - **提取直接前驱/后继对**:遍历上述得到的关系表,寻找那些满足严格小于等于但又没有其它更小值介于其间的情况——这些便是所谓的“覆盖”。 - **布局绘图**: - 将较小者放在较低位置; - 较大者置于上方; - 使用直线连接每一对具有直接前后顺关联性的顶点; - 如果某个元素既不是最大也不是最小,则它应该位于上下层之间适当的高度上以保持层次分明。 下面给出一个具体的Python实现来帮助理解这一流程: ```python import networkx as nx from matplotlib import pyplot as plt def draw_hasse_diagram(divisors): G = nx.DiGraph() # Add nodes and edges based on divisibility relation. for i in divisors: for j in divisors: if i != j and not any(i % k == 0 and k % j == 0 for k in set(divisors)-{i,j}): if i % j == 0 or j % i == 0: G.add_edge(min(i, j), max(i, j)) pos = {node:(divisors.index(node)%len(divisors)//2,-divisors[::-1].index(node))for node in G.nodes()} fig, ax = plt.subplots(figsize=(8,6)) nx.draw(G,pos=ax.get_position(),with_labels=True,node_size=500,node_color='lightblue',font_weight="bold",arrows=False) plt.show() # Example usage with factors of number 54. draw_hasse_diagram([d for d in range(1,55)if 54%d==0]) ``` 此代码片段利用`networkx`库创建了一个有向无环图(DAG),并通过matplotlib进行了可视化呈现。注意这里的边方向是从下往上指向更大的数,这符合传统意义上的哈斯图画法。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值