GMN,即图匹配网络。GMN的输入也是图像,即ACFG。此方法基于Gemini进行改进,在网络迭代过程中,相对于Gemini独立生成每个图的嵌入,GMN还在图之间传递信息,从而充分利用ACFG的特征,能更好地识别图之间的细微差别。因为GMN的嵌入过程中,两个图像的嵌入不是独立的,会在传播层互相交流两个图像的信息,所以最终对于函数得到的嵌入向量就跟函数之间的组合有关系,一个相同的函数在不同的组合情况下,得到的向量可能不一样,有细微的变化,判断能否正确识别漏洞点函数不能再用COS值严格相等。流程如图所示。
GMN实现方法
针对跨架构本身,由于算法适应不同的框架,有一定可能会损失一定的精度。所以,针对某一确定架构的固件采用该跨架构算法相比采用其确定的单架构算法,效率和精度都可能有所降低,并且GMN可认为是当前跨架构最优算法,但是其计算时间也并不乐观。