课题拟解决的关键技术问题,拟采取的技术路线和主要创新点:
关键技术问题和研究内容:
- 勒索软件特征的有效提取:研究如何有效地从PE文件中提取出深度体现勒索软件行为特征的信息。
- 基于机器学习的检测方案优化:使用机器学习分类算法进行勒索软件检测。选择和调整算法参数以优化检测效果,设计合理的模型结构以应对不同类型的勒索软件样本。
- 检测方案的鲁棒性评估:评估所设计的检测方案在面对对抗攻击时的鲁棒性,以及如何提升方案的抗攻击能力。
技术路线和研究方案
1.数据收集与预处理:收集样本,构建训练和测试数据集。
2.特征工程:基于PE文件的结构和行为模式,构建特征集。
3.模型训练与评估:利用机器学习算法训练勒索软件检测模型,评估模型的性能。
4.对抗攻击与鲁棒性评估:开展对抗攻击实验,评估鲁棒性。
5.原型系统开发与验证:开发基于特征工程的勒索软件检测原型系统。
主要创新点:
1.特征提取方法的创新:基于深度学习的特征提取方法,更有效地提取行为特征。
2.检测算法的优化:结合多种机器学习分类算法,设计一种混合检测模型,充分利用不同算法的优势,提高检测的效率和稳定性。
3.对抗攻击与鲁棒性评估:将对抗攻击引入勒索软件检测领域,对检测方案的鲁棒性进行全面评估,为提升检测方案的抗攻击能力提供有力支持。