使用Python绘制猪肉批发价曲线

猪概念去年是一个不错的赛道,所以这次实验想分析一下猪🐖。

首先,使用AKShare下载数据,然后使用matplotlib绘制曲线图,代码如下:

import akshare as ak
import matplotlib.pyplot as plt
import numpy as np

x = []
y = []

plt.figure(figsize=(10, 5))

data = ak.futures_hog_info(symbol="猪肉批发价")
for i in range(0, len(data.get('value'))):
    val = data.get('value')[i]
    date = data.get('date')[i]
    if np.isnan(val):
        break
    x.append(date)
    y.append(val)

plt.plot(x, y, 'b')
plt.grid()
plt.title('20220406 - 20230406')
plt.show()

绘制结果如图:

可以看出,去年一年猪肉的批发价经历了一轮大起大落,去年10月份的时候猪肉价格堪比牛肉。知道猪肉批发价后,我们更感兴趣它能给市场带来什么影响,我们查询了猪板块(880936)和猪企龙头牧原股份(002714)的日K线图,如下图所示,同样是20220406-20230406的区间:

可以看出,猪肉批发价与市场反应有些许的相似性,牧原的股价和猪肉批发价的起伏都十分相似,那是不是照着猪肉批发价买猪概念的股票就行了?行不行不知道,但为什么去年猪价会是这样一个走势形态,我们需要在数据中找到合理解释。

我们在 国家统计局官网 查询猪相关的统计数据,首先是猪生产者价格指数,该指数越高说明生产猪的成本越高(可以参考我的博文CPI和PPI),2022年四个季度的猪生产者价格指数分别为:

第一季度第二季度第三季度第四季度
48.774.1136.1142.1

意味着,养猪成本一直在增高,那么猪价上升是合理的市场反应,那为什么去年第四季度猪价掉下去了?根据 2022年前三季度全国生猪出栏量 分析,虽然成本提高,但猪出栏量前三季也在提高,且第三季和第四季的生产者指数增长率减缓,国家从去年9月开始分多批挂牌投放中央储备冻猪肉...种种政策将猪肉价格压住了。

本次实验主要是找关联分析为主,有错误请留言指正!

分析猪肉与牛肉价格之间的相关性主要是为了了解这两种肉类的价格变动是否同步,是否存在某种经济规律或者供需关系。通常我们使用统计学方法,如皮尔逊相关系数(Pearson's correlation coefficient)来衡量它们线性的关联程度,正值表示正相关,负值表示负相关,接近于0则说明无明显关联。 为了完成这个任务,你需要按照以下步骤操作: 1. **加载数据**:首先从Excel文件(price.xlsx)中读取猪肉和牛肉的价格数据,可以使用Python的数据处理库pandas,如`pd.read_excel()`函数。 ```python import pandas as pd df = pd.read_excel('price.xlsx', sheet_name='Price Data') ``` 2. **数据预处理**:检查数据是否有缺失值,并确认“猪肉”和“牛肉”的列名正确。 3. **计算相关性**:使用pandas的`corr()`函数计算相关系数。 ```python correlation = df[['猪肉', '牛肉']].corr().iloc[0, 1] ``` 4. **可视化**:可以使用matplotlib或seaborn库绘制散点图和直方图来直观展示价格走势,并通过颜色编码显示相关性。 ```python import matplotlib.pyplot as plt plt.figure(figsize=(10, 6)) sns.scatterplot(x="猪肉", y="牛肉", data=df, alpha=0.7) plt.title("猪肉与牛肉价格散点图") plt.xlabel("猪肉价格") plt.ylabel("牛肉价格") # 可视化相关性 sns.jointplot("猪肉", "牛肉", df, kind="hex", color="#4CB391") plt.show() ``` 5. **绘制价格趋势图**:使用line plot绘制每种肉类的价格随时间的变化。 ```python plt.figure(figsize=(10, 4)) plt.plot(df['日期'], df['猪肉'], label='猪肉价格') plt.plot(df['日期'], df['牛肉'], label='牛肉价格') plt.xlabel('日期') plt.ylabel('价格') plt.title('猪肉与牛肉价格走势') plt.legend() plt.grid(True) plt.show() ``` 完成后,你可以看到价格相关性和两者价格变化的趋势。如果存在相关性,那么在价格上涨或下跌时,可能会观察到相似的行为;如果没有相关性,则表明可能是由独立的因素驱动的。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值