1. 110平衡二叉树
给定一个二叉树,判断它是否是高度平衡的二叉树。
本题中,一棵高度平衡二叉树定义为:一个二叉树每个节点 的左右两个子树的高度差的绝对值不超过1。
示例 1:
给定二叉树 [3,9,20,null,null,15,7]
返回 true 。
示例 2:
给定二叉树 [1,2,2,3,3,null,null,4,4]
返回 false 。
解题思路:
1.明确递归函数的参数和返回值
参数:当前传入节点。返回值:以当前传入节点位根节点的树的高度
那么如何标记左右子树是否差值大于1呢?
如果当前传入节点为根节点的二叉树已经不是二叉平衡树了,还返回高度的话就没有意义了。
所以如果已经不是二叉平衡树了,可以返回-1 来标记已经不符合平衡树的规则了。
(-1表示已经不是平衡二叉树了,否则返回值是以该节点为根节点树的高度)
2.明确终止条件
递归的过程中依然是遇到空节点了为终止,返回0,表示当前节点为根节点的树高度为0
3.明确单层递归的逻辑
如何判断以当前传入节点为根节点的二叉树是否是平衡二叉树呢?当然是其左子树高度和其右子树高度的差值。
分别求出其左右子树的高度,然后如果差值小于等于1,则返回当前二叉树的高度,否则返回-1,表示已经不是二叉平衡树了。
代码如下:
#include<iostream>
using namespace std;
struct TreeNode {
int val;
TreeNode* left;
TreeNode* right;
TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
};
class Solution {
public:
// 1.确定递归函数的参数和返回值
// 返回以该节点为根节点时的二叉树高度,如果不是平衡二叉树则返回-1
int getHeight(TreeNode* node) {
// 2.确定终止条件
if (node == nullptr) return 0;
// 3.确定单层递归逻辑
int leftHeight = getHeight(node->left); // 左
if (leftHeight == -1) return -1;
int rightHeight = getHeight(node->right); // 右
if (rightHeight == -1) return -1;
return abs(leftHeight - rightHeight) > 1 ? -1 : 1 + max(leftHeight, rightHeight);
}
bool isBalanced(TreeNode* root) {
return getHeight(root) == -1 ? false : true;
}
};
int main(void) {
Solution solu;
TreeNode* root = new TreeNode(3);
root->left = new TreeNode(9);
root->right = new TreeNode(20);
root->right->left = new TreeNode(15);
root->right->right = new TreeNode(7);
int result = solu.isBalanced(root);
cout << result << endl;
system("pause");
return 0;
}
2. 257二叉树的所有路径
题目:给定一个二叉树,返回所有从根节点到叶子节点的路径。
示例:
思路:
-
此题要求从根节点到叶子的路径,需要前序遍历(方便让父节点指向孩子节点,找到对应的路径)
-
此题涉及回溯,要把路径记录下来,需要回溯来回一个路径再进入另一个路径。
前序遍历以及回溯的过程如图:
解题步骤:
1.确定递归函数的参数和返回值
要传入根节点,记录每一条路径的path,和存放结果集的result,这里递归不需要返回值,代码如下:
void traversal(TreeNode* cue, vector<int>& path, vector<string>& result)
2.确定递归终止条件
本题找到叶子节点,就开始结束的处理逻辑了(把路径放进result里)
那么什么时候算是找到了叶子节点? 是当 cur 不为空,其左右孩子都为空的时候,就找到叶子节点。本题终止条件是:
if (cur->left == nullptr && cur->rihght == nullptr) {
终止处理逻辑
}
为什么没有判断cur是否为空呢,因为下面的逻辑可以控制空节点不入循环。
再来看一下终止处理的逻辑。
这里使用vector 结构path来记录路径,所以要把vector 结构的path转为string格式,再把这个string 放进 result里。
那么为什么使用了vector 结构来记录路径呢? 因为在下面处理单层递归逻辑的时候,要做回溯,使用vector方便来做回溯。
终止处理逻辑如下:
if (cur->left == nullptr && cur->right == nullptr) { // 遇到叶子节点
string sPath;
for (int i = 0; i < path.size() - 1; i++) { // 将path里记录的路径转为string格式
sPath += to_string(path[i]);
sPath += "->";
}
sPath += to_string(path[path.size() - 1]); // 记录最后一个节点(叶子节点)
result.push_back(sPath); // 收集一个路径
return;
}
3.确定单层递归逻辑
因为是前序,需要先处理中间节点,中间节点就是我们要记录路径上的节点,先放进path中
path.push_back(cur->val)
然后是递归和回溯的过程,上面说过没有判断cur是否为空,那么在这里递归的时候,如果为空就不进行下一层递归了
此时还没完,递归完,要做回溯啊,因为path 不能一直加入节点,它还要删节点,然后才能加入新的节点。
回溯和递归是一一对应的,有一个递归,就要有一个回溯
代码如下:
if (cur->left) {
traversal(cur->left, path, result);
path.pop_back(); // 回溯
}
if (cur->right) {
traversal(cur->right, path, result);
path.pop_back(); // 回溯
}
代码如下:
#include<iostream>
#include<vector>
#include<string>
using namespace std;
struct TreeNode {
int val;
TreeNode* left;
TreeNode* right;
TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
};
class Solution {
private:
// 1.确定递归函数的参数和返回值
void traversal(TreeNode* cur, vector<int>& path, vector<string>& result) {
path.push_back(cur->val); // 中,因为最后一个节点也要加入到path中
// 2.确定终止条件
if (cur->left == nullptr && cur->right == nullptr) {
string sPath;
for (int i = 0; i < path.size() - 1; i++) {
sPath += to_string(path[i]);
sPath += "->";
}
sPath += to_string(path[path.size() - 1]);
result.push_back(sPath);
return;
}
// 3.确定单层递归逻辑
if (cur->left) {
traversal(cur->left, path, result);
path.pop_back(); // 回溯
}
if (cur->right) {
traversal(cur->right, path, result);
path.pop_back(); // 回溯
}
}
public:
vector<string> binaryTreePaths(TreeNode* root) {
vector<string> result;
vector<int> path;
if (root == nullptr) return result;
traversal(root, path, result);
return result;
}
};
int main(void) {
Solution solu;
TreeNode* root = new TreeNode(1);
root->left = new TreeNode(2);
root->left->right = new TreeNode(5);
root->right = new TreeNode(3);
vector<string> result = solu.binaryTreePaths(root);
for (int i = 0; i < result.size(); i++) {
cout << result[i] << endl;
}
system("pause");
return 0;
}
3. 404左叶子之和
题目:计算给定二叉树所有左叶子之和
示例:
思路:
判断当前节点是不是左叶子是无法判断的,必须要通过节点的父节点来判断其左孩子是不是左叶子
如果该节点的左节点不为空,该节点的左节点的左节点为空,该节点的左节点的右节点为空,则找到了一个左叶子
解题步骤:
1.确定递归函数的参数和返回值
判断一个树的左叶子节点之和,那么一定要传入树的根节点,递归函数的返回值为数值之和,所以为int使用题目中给出的函数就可以了。
2.确定终止条件
如果遍历到空节点,那么左叶子值一定是0
注意,只有当前遍历的节点是父节点,才能判断其子节点是不是左叶子。 所以如果当前遍历的节点是叶子节点,那其左叶子也必定是0
3.确定单层递归的逻辑
当遇到左叶子节点时候,记录数值,然后通过递归求取左子树左叶子之和,和 右子树左叶子之和,相加便是整个树的左叶子之和
代码如下:
#include<iostream>
using namespace std;
struct TreeNode {
int val;
TreeNode* left;
TreeNode* right;
TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
};
class Solution {
public:
// 1.确定递归函数的参数和返回值
int sumOfLeftLeaves(TreeNode* node) {
// 2.确定终止条件
if (node == nullptr) return 0;
if (node->left == nullptr && node->right == nullptr) return 0;
int leftValue = sumOfLeftLeaves(node->left);
if (node->left && !node->left->left && !node->left->right) { // node-left,!node->left->left意思是:左节点不为空,且左节点的左子树为空
leftValue = node->left->val;
}
int rightValue = sumOfLeftLeaves(node->right);
int sum = leftValue + rightValue;
return sum;
}
};
int main(void) {
Solution solu;
TreeNode* root = new TreeNode(3);
root->left = new TreeNode(9);
root->right = new TreeNode(20);
root->right->left = new TreeNode(15); // 3 9 20 null null 15 7
root->right->right = new TreeNode(7);
cout << solu.sumOfLeftLeaves(root) << endl;
system("pause");
return 0;
}