代码随想录Day17—二叉树part04

文章介绍了如何判断一个二叉树是否是平衡二叉树,通过递归计算节点高度并检查差值。同时,讲解了如何找出二叉树的所有路径,利用前序遍历和回溯方法。最后,提出了计算二叉树所有左叶子之和的问题,通过递归遍历解决。
摘要由CSDN通过智能技术生成

1. 110平衡二叉树

给定一个二叉树,判断它是否是高度平衡的二叉树。

本题中,一棵高度平衡二叉树定义为:一个二叉树每个节点 的左右两个子树的高度差的绝对值不超过1。

示例 1:

给定二叉树 [3,9,20,null,null,15,7]

返回 true 。

示例 2:

给定二叉树 [1,2,2,3,3,null,null,4,4]

返回 false 。

解题思路:

1.明确递归函数的参数和返回值

参数:当前传入节点。返回值:以当前传入节点位根节点的树的高度

那么如何标记左右子树是否差值大于1呢?

如果当前传入节点为根节点的二叉树已经不是二叉平衡树了,还返回高度的话就没有意义了。

所以如果已经不是二叉平衡树了,可以返回-1 来标记已经不符合平衡树的规则了。

(-1表示已经不是平衡二叉树了,否则返回值是以该节点为根节点树的高度)

2.明确终止条件

递归的过程中依然是遇到空节点了为终止,返回0,表示当前节点为根节点的树高度为0

3.明确单层递归的逻辑

如何判断以当前传入节点为根节点的二叉树是否是平衡二叉树呢?当然是其左子树高度和其右子树高度的差值。

分别求出其左右子树的高度,然后如果差值小于等于1,则返回当前二叉树的高度,否则返回-1,表示已经不是二叉平衡树了。

代码如下:

#include<iostream>
using namespace std;
​
struct TreeNode {
    int val;
    TreeNode* left;
    TreeNode* right;
    TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
};
​
class Solution {
public:
    // 1.确定递归函数的参数和返回值
    // 返回以该节点为根节点时的二叉树高度,如果不是平衡二叉树则返回-1
    int getHeight(TreeNode* node) {
        // 2.确定终止条件
        if (node == nullptr) return 0;
        // 3.确定单层递归逻辑
        int leftHeight = getHeight(node->left); // 左
        if (leftHeight == -1) return -1;
        int rightHeight = getHeight(node->right); // 右
        if (rightHeight == -1) return -1;
        return abs(leftHeight - rightHeight) > 1 ? -1 : 1 + max(leftHeight, rightHeight);
    }
    bool isBalanced(TreeNode* root) {
        return getHeight(root) == -1 ? false : true;
    }
};
​
int main(void) {
    Solution solu;
    TreeNode* root = new TreeNode(3);
    root->left = new TreeNode(9);
    root->right = new TreeNode(20);
    root->right->left = new TreeNode(15);
    root->right->right = new TreeNode(7);
    int result = solu.isBalanced(root);
    cout << result << endl;
    system("pause");
    return 0;
}

2. 257二叉树的所有路径

题目:给定一个二叉树,返回所有从根节点到叶子节点的路径。

示例:

思路:

  • 此题要求从根节点到叶子的路径,需要前序遍历(方便让父节点指向孩子节点,找到对应的路径)

  • 此题涉及回溯,要把路径记录下来,需要回溯来回一个路径再进入另一个路径。

前序遍历以及回溯的过程如图:

解题步骤:

1.确定递归函数的参数和返回值

要传入根节点,记录每一条路径的path,和存放结果集的result,这里递归不需要返回值,代码如下:

void traversal(TreeNode* cue, vector<int>& path, vector<string>& result)

2.确定递归终止条件

本题找到叶子节点,就开始结束的处理逻辑了(把路径放进result里)

那么什么时候算是找到了叶子节点? 是当 cur 不为空,其左右孩子都为空的时候,就找到叶子节点。本题终止条件是:

if (cur->left == nullptr && cur->rihght == nullptr) {
    终止处理逻辑
}

为什么没有判断cur是否为空呢,因为下面的逻辑可以控制空节点不入循环。

再来看一下终止处理的逻辑。

这里使用vector 结构path来记录路径,所以要把vector 结构的path转为string格式,再把这个string 放进 result里。

那么为什么使用了vector 结构来记录路径呢? 因为在下面处理单层递归逻辑的时候,要做回溯,使用vector方便来做回溯。

终止处理逻辑如下:

if (cur->left == nullptr && cur->right == nullptr) { // 遇到叶子节点
    string sPath;
    for (int i = 0; i < path.size() - 1; i++) { // 将path里记录的路径转为string格式
        sPath += to_string(path[i]);
        sPath += "->";
    }
    sPath += to_string(path[path.size() - 1]); // 记录最后一个节点(叶子节点)
    result.push_back(sPath); // 收集一个路径
    return;
}

3.确定单层递归逻辑

因为是前序,需要先处理中间节点,中间节点就是我们要记录路径上的节点,先放进path中

path.push_back(cur->val)

然后是递归和回溯的过程,上面说过没有判断cur是否为空,那么在这里递归的时候,如果为空就不进行下一层递归了

此时还没完,递归完,要做回溯啊,因为path 不能一直加入节点,它还要删节点,然后才能加入新的节点。

回溯和递归是一一对应的,有一个递归,就要有一个回溯

代码如下:

if (cur->left) {
    traversal(cur->left, path, result);
    path.pop_back(); // 回溯
}
if (cur->right) {
    traversal(cur->right, path, result);
    path.pop_back(); // 回溯
}

代码如下:

#include<iostream>
#include<vector>
#include<string>
using namespace std;
​
struct TreeNode {
    int val;
    TreeNode* left;
    TreeNode* right;
    TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
};
​
class Solution {
private:
    // 1.确定递归函数的参数和返回值
    void traversal(TreeNode* cur, vector<int>& path, vector<string>& result) {
        path.push_back(cur->val); // 中,因为最后一个节点也要加入到path中
        // 2.确定终止条件
        if (cur->left == nullptr && cur->right == nullptr) {
            string sPath;
            for (int i = 0; i < path.size() - 1; i++) {
                sPath += to_string(path[i]);
                sPath += "->";
            }
            sPath += to_string(path[path.size() - 1]);
            result.push_back(sPath);
            return;
        }
        // 3.确定单层递归逻辑
        if (cur->left) {
            traversal(cur->left, path, result);
            path.pop_back(); // 回溯
        }
        if (cur->right) {
            traversal(cur->right, path, result);
            path.pop_back(); // 回溯
        }
    }
​
public:
    vector<string> binaryTreePaths(TreeNode* root) {
        vector<string> result;
        vector<int> path;
        if (root == nullptr) return result;
        traversal(root, path, result);
        return result;
    }
};
​
int main(void) {
    Solution solu;
    TreeNode* root = new TreeNode(1);
    root->left = new TreeNode(2);
    root->left->right = new TreeNode(5);
    root->right = new TreeNode(3);
    vector<string> result = solu.binaryTreePaths(root);
    for (int i = 0; i < result.size(); i++) {
        cout << result[i] << endl;
    }
    system("pause");
    return 0;
}

3. 404左叶子之和

题目:计算给定二叉树所有左叶子之和

示例:

思路:

判断当前节点是不是左叶子是无法判断的,必须要通过节点的父节点来判断其左孩子是不是左叶子

如果该节点的左节点不为空,该节点的左节点的左节点为空,该节点的左节点的右节点为空,则找到了一个左叶子

解题步骤:

1.确定递归函数的参数和返回值

判断一个树的左叶子节点之和,那么一定要传入树的根节点,递归函数的返回值为数值之和,所以为int使用题目中给出的函数就可以了。

2.确定终止条件

如果遍历到空节点,那么左叶子值一定是0

注意,只有当前遍历的节点是父节点,才能判断其子节点是不是左叶子。 所以如果当前遍历的节点是叶子节点,那其左叶子也必定是0

3.确定单层递归的逻辑

当遇到左叶子节点时候,记录数值,然后通过递归求取左子树左叶子之和,和 右子树左叶子之和,相加便是整个树的左叶子之和

代码如下:

#include<iostream>
using namespace std;
​
struct TreeNode {
    int val;
    TreeNode* left;
    TreeNode* right;
    TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
};
​
class Solution {
public:
    // 1.确定递归函数的参数和返回值
    int sumOfLeftLeaves(TreeNode* node) {
        // 2.确定终止条件
        if (node == nullptr) return 0;
        if (node->left == nullptr && node->right == nullptr) return 0;
​
        int leftValue = sumOfLeftLeaves(node->left);
        if (node->left && !node->left->left && !node->left->right) { // node-left,!node->left->left意思是:左节点不为空,且左节点的左子树为空
            leftValue = node->left->val;
        }
        int rightValue = sumOfLeftLeaves(node->right);
​
        int sum = leftValue + rightValue;
        return sum;
    }
};
​
int main(void) {
    Solution solu;
    TreeNode* root = new TreeNode(3);
    root->left = new TreeNode(9);
    root->right = new TreeNode(20);
    root->right->left = new TreeNode(15); // 3 9 20 null null 15 7
    root->right->right = new TreeNode(7);
    cout << solu.sumOfLeftLeaves(root) << endl;
    system("pause");
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

欢仔今天学习了嘛

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值