付款条件OBB8解释说明

配置相关代码:OBB8/OBB9

①基准日期计算固定日是指从哪一天开始作为起算日期

                         附加月份是指付加多少月,作为起算日期(最大值:99)

                         基准日期缺省值:根据凭证的哪个日期作为期初计算时间

举例:固定日是:28号,附加月份为2个月。基本日期缺省值为:过账日期

过账日期为:2024/03/21,那么起算日期=2024/05/28号

如果附加月份是0,那么即本月的固定日为起算日。

②付款条件:固定日期是指将哪天作为收款日

                     附加月(条件1)就是指附加的月份

举例:固定日期15号,附加4个月。过账日期:2024/03/21,起算日期是上面的28号附加2个月

那么净价到期日=起算日期+付款条件=2024/05/28+4个月当月15号=2024/09/15到期!

付款条件对应的附加月最多只能是31个月。

例如:客户付款条件5年,那么直接调付款条件月份是不够的,我们需要结合基准日期将时间调后再计算付款日。可以基准日期附加月30个月,付款条件30个月。

其他字段:分期付款  涉及合同类客户分期付款的情况,需要先创建个母付款条件编码,此时就需要勾选此字段。然后通过OBB9按照付款比例分配其他的子付款条件。

其他详细字段解释可以参考:SAP软件付款条件的配置及应用介绍  这位大神的说明,也十分重要,耐心阅读。

<think>嗯,用户想了解YOLOv8OBB的公式框图和工作原理。首先,我需要回忆一下YOLOv8的基本结构,然后看看OBB是如何在原有基础上进行改进的。YOLO通常使用水平边界框(HBB),而OBB是带旋转角度的,适合检测倾斜物体,比如遥感图像中的车辆或飞机。 YOLOv8OBB可能是在检测头部分进行了调整,添加了角度参数。传统的检测输出是(x, y, w, h),而OBB需要(x, y, w, h, θ),其中θ表示旋转角度。这个θ可能用弧度表示,或者通过某种编码方式来处理周期性问题,比如使用正弦和余弦函数。 接下来是损失函数的变化。HBB通常用CIoU损失,但OBB可能需要不同的IoU计算方法,比如旋转IoU(RIoU)。不过计算旋转框的交集面积比较复杂,可能采用近似方法或者优化后的算法。另外,角度的损失可能需要单独处理,比如使用L1损失加上周期性的考虑,防止180度翻转的问题。 在模型结构方面,YOLOv8的主干网络和Neck部分可能没有太大变化,主要在Head部分增加了角度预测的分支。这个分支的输出可能需要用特定的激活函数,比如使用tanh来限制角度范围,或者将角度分解为sinθ和cosθ两个分量,通过反正切函数计算角度,这样可以避免角度突变的问题。 数据预处理方面,OBB需要标注旋转框的信息,因此在训练时数据增强也要考虑旋转,比如随机旋转图像时,对应的OBB角度也要相应调整。这可能会增加数据处理的复杂性。 后处理部分,传统的NMS处理水平框,而OBB可能需要旋转NMS(R-NMS),这会增加计算量,但能更准确地去除重叠的预测框。不过,R-NMS的实现可能比较复杂,尤其是在处理大量候选框时需要考虑效率问题。 用户可能的应用场景包括遥感图像、自动驾驶中的交通标志检测等,这些场景中物体通常有各种方向。需要确保解释清楚OBB相比HBB的优势,比如更高的检测精度,尤其是对于密集排列的倾斜物体。 可能需要验证一下YOLOv8官方文档或源码,确认OBB的具体实现方式。比如,角度是定义为相对于x轴的方向,还是其他方式。另外,损失函数的具体组合,是否平衡了位置、尺寸和角度的损失权重。 总结来说,OBB在YOLOv8中的实现主要涉及输出参数的扩展、损失函数的调整、以及后处理的改进。需要将这些部分清晰地解释给用户,并结合实际应用说明其工作原理和优势。</think>### YOLOv8 OBB(Oriented Bounding Box)公式框图解释 YOLOv8中的OBB(定向边界框)是对传统水平边界框(HBB)的扩展,主要用于检测**倾斜或旋转物体**(如遥感图像中的车辆、航拍建筑物等)。其核心公式框图和工作原理如下: --- #### 1. **OBB参数定义** OBB在YOLOv8中表示为五元组:$$(x_c, y_c, w, h, \theta)$$ - $(x_c, y_c)$: 边界框中心坐标 - $(w, h)$: 边界框的宽度和高度 - $\theta$: 旋转角度(通常以弧度表示,范围$[-\pi/4, \pi/4]$或$[0, \pi/2]$) --- #### 2. **网络输出调整** YOLOv8的检测头(Head)在OBB模式下会扩展输出通道: - 每个锚点输出维度从4(HBB)变为5(OBB),新增$\theta$参数 - 角度$\theta$可能通过以下方式编码: - 直接回归角度值(使用$tanh$激活限制范围) - 分解为$\sin(2\theta)$和$\cos(2\theta)$[^1],避免角度周期性问题: $$\theta = \frac{1}{2} \arctan2(\sin_output, \cos_output)$$ --- #### 3. **损失函数** OBB的损失函数包含三部分: 1. **中心点偏移损失**:L1或MSE损失 $$L_{center} = \|(x_{pred}, y_{pred}) - (x_{gt}, y_{gt})\|$$ 2. **尺寸损失**:通常使用CIoU损失变体 3. **角度损失**:周期敏感损失(如Modular Loss) $$L_{angle} = 1 - \cos(\theta_{pred} - \theta_{gt})$$ --- #### 4. **旋转框交并比(RIoU)** 传统IoU无法直接用于旋转框,YOLOv8可能采用: - **多边形相交面积计算**(基于分离轴定理) - **近似RIoU**:通过旋转坐标系简化计算 $$RIoU = \frac{Area(B_{pred} \cap B_{gt})}{Area(B_{pred} \cup B_{gt})}$$ --- #### 5. **后处理优化** - **旋转非极大值抑制(R-NMS)**:考虑角度差异的NMS变体 - 角度加权抑制阈值: $$overlap = IoU \cdot (1 - |\theta_{pred} - \theta_{gt}|/\pi)$$ --- ### 工作原理流程图 ```plaintext 输入图像 → Backbone特征提取 → Neck多尺度融合 → Head预测OBB参数 → R-NMS后处理 → 输出旋转框 ``` --- ### 关键创新点 1. **角度解耦设计**:将角度回归与位置/尺寸回归分离,避免梯度冲突 2. **旋转敏感特征对齐**:在RoI提取时考虑角度方向 3. **轻量化RIoU计算**:通过快速多边形裁剪算法加速训练 ---
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值